# Run test with: # torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_embedding_parallel.py import torch import torch.nn as nn import torch.nn.functional as F import pytest from einops import rearrange from apex.transformer import parallel_state from flash_attn.modules.embedding import GPT2Embeddings, ParallelGPT2Embeddings is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8 @pytest.mark.parametrize('dtype', [torch.float16] + ([torch.bfloat16] if is_sm8x else [])) # @pytest.mark.parametrize('dtype', [torch.bfloat16]) @pytest.mark.parametrize('world_size', [1, 2, 4, 8]) # @pytest.mark.parametrize('world_size', [2]) @pytest.mark.parametrize('has_pos_emb', [True, False]) # @pytest.mark.parametrize('has_pos_emb', [True]) @pytest.mark.parametrize('dim', [1024]) def test_embedding_parallel(dim, world_size, has_pos_emb, dtype): vocab_size = 50264 seqlen = 2048 assert vocab_size % world_size == 0 assert dim % world_size == 0 rtol, atol = (3e-3, 5e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3) if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl', init_method='env://') device = f'cuda:{torch.distributed.get_rank()}' assert world_size <= torch.distributed.get_world_size() parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) rank = parallel_state.get_tensor_model_parallel_rank() # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 1024 assert (batch_size * seqlen) % world_size == 0 input_ids_pt = torch.randint(0, vocab_size, (batch_size, seqlen), device=device) input_ids = input_ids_pt.detach().clone() model_pt = GPT2Embeddings(dim, vocab_size, seqlen if has_pos_emb else 0, device=device, dtype=dtype) model = ParallelGPT2Embeddings(dim, vocab_size, seqlen if has_pos_emb else 0, parallel_state.get_tensor_model_parallel_group(), device=device, dtype=dtype) partition_vocab_size = vocab_size // world_size partition_dim = dim // world_size with torch.no_grad(): model.word_embeddings.weight.copy_( model_pt.word_embeddings.weight[rank * partition_vocab_size:(rank + 1) * partition_vocab_size] ) if has_pos_emb: model.position_embeddings.weight.copy_( model_pt.position_embeddings.weight[:, rank * partition_dim:(rank + 1) * partition_dim] ) out = model(input_ids, combine_batch_seqlen_dim=True) out_pt = rearrange(model_pt(input_ids), 'b s d -> (b s) d') partition_batch_dim = batch_size * seqlen // world_size assert torch.allclose( out, out_pt[rank * partition_batch_dim:(rank + 1) * partition_batch_dim], rtol=rtol, atol=atol ) g = torch.randn_like(out_pt) out_pt.backward(g) out.backward(g[rank * partition_batch_dim:(rank + 1) * partition_batch_dim]) parallel_state.destroy_model_parallel() assert torch.allclose( model.word_embeddings.weight.grad, model_pt.word_embeddings.weight.grad[rank * partition_vocab_size:(rank + 1) * partition_vocab_size], rtol=rtol, atol=atol ) if has_pos_emb: assert torch.allclose( model.position_embeddings.weight.grad, model_pt.position_embeddings.weight.grad[:, rank * partition_dim:(rank + 1) * partition_dim], rtol=rtol, atol=atol )