# Copyright (c) 2022, Tri Dao. import torch import torch.nn as nn import torch.nn.functional as F try: from flash_attn.ops.fused_dense import FusedDenseGeluDense except ImportError: FusedDenseGeluDense = None class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, activation=F.gelu, return_residual=False, device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.return_residual = return_residual self.fc1 = nn.Linear(in_features, hidden_features, **factory_kwargs) self.activation = activation self.fc2 = nn.Linear(hidden_features, out_features, **factory_kwargs) def forward(self, x): y = self.fc1(x) y = self.activation(y) y = self.fc2(y) return y if not self.return_residual else (y, x)