# Adapted from https://github.com/NVIDIA/apex/blob/master/apex/fused_dense/fused_dense.py # We make it work with pytorch amp and with bfloat16. from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from torch.cuda.amp import custom_bwd, custom_fwd # import fused_dense_cuda # from apex import fused_dense_lib as fused_dense_cuda from flash_attn.ops.gelu_activation import gelu_bwd class FusedDenseFunc(torch.autograd.Function): @staticmethod @custom_fwd def forward(ctx, x, weight, bias, return_residual=False): if torch.is_autocast_enabled(): dtype = torch.get_autocast_gpu_dtype() x, weight = [a.to(dtype=dtype) for a in [x, weight]] bias = bias.to(dtype=dtype) if bias is not None else None ctx.return_residual = return_residual x = x.contiguous() weight = weight.contiguous() ctx.save_for_backward(x, weight) batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = batch_shape.numel() assert batch_dim <= 64 * 1024, 'fused_dense only supports dimension at most 64k' output = F.linear(x, weight, bias) return output if not return_residual else (output, x) @staticmethod @custom_bwd def backward(ctx, grad_output, *args): grad_output = grad_output.contiguous() if ctx.return_residual: grad_input, = args grad_input = grad_input.contiguous() x, weight = ctx.saved_tensors batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = batch_shape.numel() grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1]) if ctx.needs_input_grad[1]: grad_weight, grad_bias = fused_dense_cuda.linear_bias_wgrad( x.reshape(batch_dim, n), grad_output, ctx.needs_input_grad[2] ) else: grad_weight = None grad_bias = grad_output if ctx.needs_input_grad[2] else None if ctx.needs_input_grad[0]: if not ctx.return_residual: grad_input = F.linear(grad_output, weight.t()) else: grad_input = torch.addmm(grad_input.reshape(batch_dim, n), grad_output, weight) grad_input = grad_input.reshape_as(x) else: grad_input = None return grad_input, grad_weight, grad_bias, None def fused_dense_func(x: Tensor, weight: Tensor, bias: Optional[Tensor] = None, return_residual: bool = False): batch_dim = x.shape[:-1].numel() dtype_eligible = (x.dtype in [torch.float16, torch.bfloat16] or (x.dtype == torch.float32 and torch.is_autocast_enabled())) if (x.is_cuda and weight.is_cuda and (bias is None or bias.is_cuda) and batch_dim <= 64 * 1024 and dtype_eligible): return FusedDenseFunc.apply(x, weight, bias, return_residual) else: out = F.linear(x, weight, bias) return out if not return_residual else (out, x) class FusedDense(nn.Linear): def __init__(self, in_features: int, out_features: int, bias: bool = True, return_residual: bool = False, device=None, dtype=None) -> None: super().__init__(in_features, out_features, bias=bias, device=device, dtype=dtype) self.return_residual = return_residual def forward(self, x): return fused_dense_func(x, self.weight, self.bias, return_residual=self.return_residual) class FusedDenseGeluDenseFunc(torch.autograd.Function): @staticmethod @custom_fwd def forward(ctx, x, weight1, bias1, weight2, bias2, save_gelu_in=True, return_residual=False, checkpoint_lvl=0, heuristic=0): """checkpoint_lvl: 0: no recomputation in the bwd 1: recompute gelu_out in the bwd 2: recompute gelu_in and gelu_out in the bwd """ assert -1 <= heuristic <= 4 if torch.is_autocast_enabled(): dtype = torch.get_autocast_gpu_dtype() x, weight1, weight2 = [a.to(dtype=dtype) for a in [x, weight1, weight2]] bias1 = bias1.to(dtype=dtype) if bias1 is not None else None bias2 = bias2.to(dtype=dtype) if bias2 is not None else None if not save_gelu_in: checkpoint_lvl = 2 assert checkpoint_lvl in [0, 1, 2] ctx.return_residual = return_residual x = x.contiguous() weight1 = weight1.contiguous() bias1 = bias1.contiguous() if bias1 is not None else None weight2 = weight2.contiguous() bias2 = bias2.contiguous() if bias2 is not None else None batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = batch_shape.numel() assert batch_dim <= 64 * 1024, 'fused_dense only supports dimension at most 64k' if heuristic == -1: gelu_in = F.linear(x, weight1, bias1) output1 = F.gelu(gelu_in, approximate='tanh') # gelu_in = F.linear(x.reshape(batch_dim, n), weight1) # This is before adding bias1 # with torch.jit.fuser('fuser2'): # output1 = bias_gelu(gelu_in, bias1) else: output1, *rest = fused_dense_cuda.linear_gelu_forward(x.reshape(batch_dim, n), weight1, bias1, save_gelu_in, heuristic) if save_gelu_in: gelu_in = rest[0] output2 = F.linear(output1, weight2, bias2) ctx.checkpoint_lvl = checkpoint_lvl ctx.heuristic = heuristic if checkpoint_lvl == 0: ctx.save_for_backward(x, weight1, weight2, gelu_in, output1) elif checkpoint_lvl == 1: ctx.save_for_backward(x, weight1, weight2, gelu_in) elif checkpoint_lvl == 2: ctx.save_for_backward(x, weight1, weight2, bias1) output2 = output2.reshape(*batch_shape, output2.shape[-1]) return output2 if not return_residual else (output2, x) @staticmethod @custom_bwd def backward(ctx, grad_output, *args): grad_output = grad_output.contiguous() checkpoint_lvl = ctx.checkpoint_lvl if ctx.return_residual: grad_input, = args grad_input = grad_input.contiguous() x, weight1, weight2, *rest = ctx.saved_tensors batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = batch_shape.numel() if checkpoint_lvl == 0: gelu_in, output1 = rest elif checkpoint_lvl == 1: gelu_in, = rest output1 = F.gelu(gelu_in, approximate='tanh') elif checkpoint_lvl == 2: bias1, = rest if ctx.heuristic == -1: gelu_in = F.linear(x, weight1, bias1) output1 = F.gelu(gelu_in, approximate='tanh') else: output1, gelu_in = fused_dense_cuda.linear_gelu_forward( x.reshape(batch_dim, n), weight1, bias1, True, ctx.heuristic ) grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1]) output1 = output1.reshape(batch_dim, output1.shape[-1]) gelu_in = gelu_in.reshape(batch_dim, gelu_in.shape[-1]) if ctx.needs_input_grad[3]: grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad( output1, grad_output, ctx.needs_input_grad[4] ) else: grad_weight2 = None grad_bias2 = grad_output if ctx.needs_input_grad[4] else None if ctx.heuristic == -1: # grad_gelu = matmul_dgelu(grad_output, weight2, gelu_in) grad_output1 = F.linear(grad_output, weight2.t()) with torch.jit.fuser('fuser2'): grad_gelu = gelu_bwd(grad_output1, gelu_in) if ctx.needs_input_grad[1]: grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_wgrad( x.reshape(batch_dim, n), grad_gelu, ctx.needs_input_grad[2] ) else: grad_weight1 = None grad_bias1 = grad_gelu if ctx.needs_input_grad[2] else None else: # The cublasLt epilogue has to compute both gelu grad and bias grad, we can't # just compute gelu grad grad_gelu, grad_bias1 = fused_dense_cuda.bias_gelu_linear_dgrad_bgrad( weight2, grad_output, gelu_in, ctx.heuristic ) if not ctx.needs_input_grad[2]: grad_bias1 = None if ctx.needs_input_grad[1]: grad_weight1 = F.linear(grad_gelu.t(), x.reshape(batch_dim, n).t()) else: grad_weight1 = None if ctx.needs_input_grad[0]: if not ctx.return_residual: grad_input = F.linear(grad_gelu, weight1.t()) else: grad_input = torch.addmm(grad_input.reshape(batch_dim, n), grad_gelu, weight1) grad_input = grad_input.reshape_as(x) else: grad_input = None return grad_input, grad_weight1, grad_bias1, grad_weight2, grad_bias2, None, None, None, None def fused_dense_gelu_dense_func( x: Tensor, weight1: Tensor, weight2: Tensor, bias1: Optional[Tensor] = None, bias2: Optional[Tensor] = None, save_gelu_in: bool = True, return_residual: bool = False, checkpoint_lvl: int = 0, heuristic: int = 0 ): batch_dim = x.shape[:-1].numel() dtype_eligible = (x.dtype in [torch.float16, torch.bfloat16] or (x.dtype == torch.float32 and torch.is_autocast_enabled())) if (x.is_cuda and weight1.is_cuda and weight2.is_cuda and (bias1 is None or bias1.is_cuda) and (bias2 is None or bias2.is_cuda) and batch_dim <= 64 * 1024 and dtype_eligible): return FusedDenseGeluDenseFunc.apply( x, weight1, bias1, weight2, bias2, save_gelu_in, return_residual, checkpoint_lvl, heuristic ) else: gelu_in = F.linear(x, weight1, bias1) output1 = F.gelu(gelu_in, approximate='tanh') output2 = F.linear(output1, weight2, bias2) return output2 if not return_residual else (output2, x) class FusedDenseGeluDense(nn.Module): def __init__(self, in_features, hidden_features, out_features=None, bias1=True, bias2=True, return_residual=False, checkpoint_lvl=0, heuristic=0, device=None, dtype=None): """ checkpoint_lvl (increasing lvl means slower but more memory saving): 0: no recomputation in the bwd 1: recompute gelu_out in the bwd 2: recompute gelu_in and gelu_out in the bwd heuristic: -1: don't fuse gemm + gelu (separate kernel) 0..4: use this heuristic for the algo section in the fused gemm + gelu For CUDA >= 11.8, you'd want heuristic=0 for both fp16 and bf16 for best perf. For CUDA <= 11.7, you'd want heuristic=1 for fp16 and heuristic=-1 for bf16. return_residual: whether to return the input x along with the output. This is for performance reason: for post-norm architecture, returning the input allows us to fuse the backward of nn.Linear with the residual connection. """ assert checkpoint_lvl in [0, 1, 2] factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() if out_features is None: out_features = in_features self.return_residual = return_residual self.checkpoint_lvl = checkpoint_lvl self.heuristic = heuristic self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1, **factory_kwargs) self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs) def forward(self, x): return fused_dense_gelu_dense_func( x, self.fc1.weight, self.fc2.weight, self.fc1.bias, self.fc2.bias, save_gelu_in=self.training, return_residual=self.return_residual, checkpoint_lvl=self.checkpoint_lvl, heuristic=self.heuristic )