# Copyright (c) 2023, Tri Dao. # Inspired by https://github.com/NVIDIA/apex/blob/master/apex/fused_dense/fused_dense.py # We make it work with pytorch amp and with bfloat16. # The TensorParallel linear modules are inspired by https://github.com/NVIDIA/apex/blob/master/apex/transformer/tensor_parallel/layers.py from typing import Optional from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from torch.distributed import ProcessGroup from torch.cuda.amp import custom_bwd, custom_fwd # import fused_dense_cuda # from apex import fused_dense_lib as fused_dense_cuda from flash_attn.ops.gelu_activation import gelu_bwd from flash_attn.utils.distributed import all_gather_raw, reduce_scatter_raw, all_reduce_raw from flash_attn.utils.distributed import reduce_scatter, all_reduce @torch.jit.script def relu_bwd(g, x): return torch.where(x >= 0, g, 0.0).to(dtype=x.dtype) class FusedDenseFunc(torch.autograd.Function): @staticmethod @custom_fwd def forward(ctx, x, weight, bias, return_residual=False, process_group=None, sequence_parallel=True): """ If process_group is not None and sequence_parallel=True, we're doing Tensor Parallel with sequence parallelism: we do an all_gather_raw of x before doing the matmul. """ ctx.compute_weight_gradient = weight.requires_grad ctx.return_residual = return_residual ctx.process_group = process_group ctx.sequence_parallel = sequence_parallel if torch.is_autocast_enabled(): x = x.to(dtype=torch.get_autocast_gpu_dtype()) x = x.contiguous() if process_group is not None and sequence_parallel: # We want to kick off the all_gather early, before weight dtype conversion total_x, handle_x = all_gather_raw(x, process_group, async_op=True) else: total_x = x if torch.is_autocast_enabled(): weight = weight.to(dtype=torch.get_autocast_gpu_dtype()) bias = bias.to(dtype=torch.get_autocast_gpu_dtype()) if bias is not None else None weight = weight.contiguous() if process_group is not None and sequence_parallel: handle_x.wait() batch_shape, n = total_x.shape[:-1], total_x.shape[-1] batch_dim = batch_shape.numel() # https://github.com/pytorch/pytorch/blob/5b51849b48a7dbccd297286cc0110def4706f9e7/aten/src/ATen/native/cuda/Blas.cpp#L174 if min(batch_dim, n, *weight.shape) > 65535 * 32: raise RuntimeError('fused_dense only supports matrix dims <= 2M') output = F.linear(total_x, weight, bias) if ctx.compute_weight_gradient: ctx.save_for_backward(x, weight) else: ctx.save_for_backward(weight) return output if not return_residual else (output, x) @staticmethod @custom_bwd def backward(ctx, grad_output, *args): grad_output = grad_output.contiguous() if ctx.return_residual: grad_input, = args grad_input = grad_input.contiguous() process_group = ctx.process_group sequence_parallel = ctx.sequence_parallel if ctx.compute_weight_gradient: x, weight = ctx.saved_tensors if process_group is not None and sequence_parallel: total_x, handle_x = all_gather_raw(x, process_group, async_op=True) else: total_x = x else: weight, = ctx.saved_tensors total_x = None batch_shape = grad_output.shape[:-1] batch_dim = batch_shape.numel() grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1]) if ctx.needs_input_grad[0]: if not ctx.return_residual: grad_input = F.linear(grad_output, weight.t()) else: grad_input = torch.addmm(grad_input.reshape(batch_dim, grad_input.shape[-1]), grad_output, weight) grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1]) if process_group is not None: reduce_fn = reduce_scatter_raw if sequence_parallel else all_reduce_raw grad_input, handle_grad_input = reduce_fn(grad_input, process_group, async_op=True) else: grad_input = None if ctx.needs_input_grad[1]: assert ctx.compute_weight_gradient if process_group is not None and sequence_parallel: handle_x.wait() grad_weight, grad_bias = fused_dense_cuda.linear_bias_wgrad( total_x.reshape(batch_dim, total_x.shape[-1]), grad_output, ctx.needs_input_grad[2] ) else: grad_weight = None grad_bias = grad_output if ctx.needs_input_grad[2] else None if process_group is not None and ctx.needs_input_grad[0]: handle_grad_input.wait() return grad_input, grad_weight, grad_bias, None, None, None def fused_dense_func(x: Tensor, weight: Tensor, bias: Optional[Tensor] = None, return_residual: bool = False, process_group: Optional[ProcessGroup] = None, sequence_parallel: bool = True): dtype_eligible = (x.dtype in [torch.float16, torch.bfloat16] or (x.dtype == torch.float32 and torch.is_autocast_enabled())) if x.is_cuda and weight.is_cuda and (bias is None or bias.is_cuda) and dtype_eligible: return FusedDenseFunc.apply(x, weight, bias, return_residual, process_group, sequence_parallel) else: assert process_group is None out = F.linear(x, weight, bias) return out if not return_residual else (out, x) class FusedDense(nn.Linear): def __init__(self, in_features: int, out_features: int, bias: bool = True, return_residual: bool = False, device=None, dtype=None) -> None: super().__init__(in_features, out_features, bias=bias, device=device, dtype=dtype) self.return_residual = return_residual def forward(self, x, process_group=None): """ If process_group is not None, we're doing Tensor Parallel with sequence parallelism: we do an all_gather of x before doing the matmul. """ return fused_dense_func(x, self.weight, self.bias, return_residual=self.return_residual, process_group=process_group) class ColumnParallelLinear(nn.Linear): def __init__(self, in_features: int, out_features: int, process_group: ProcessGroup, bias: bool = True, sequence_parallel=True, device=None, dtype=None) -> None: world_size = torch.distributed.get_world_size(process_group) if out_features % world_size != 0: raise ValueError(f'out_features ({out_features}) must be divisible by ' f'world_size ({world_size})') super().__init__(in_features, out_features // world_size, bias=bias, device=device, dtype=dtype) self.process_group = process_group self.sequence_parallel = sequence_parallel def forward(self, x): # If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism: # we do an all_gather of x before doing the matmul. # If not, then the input is already gathered. return fused_dense_func(x, self.weight, self.bias, process_group=self.process_group, sequence_parallel=self.sequence_parallel) class RowParallelLinear(nn.Linear): def __init__(self, in_features: int, out_features: int, process_group: ProcessGroup, bias: bool = True, sequence_parallel=True, device=None, dtype=None) -> None: world_size = torch.distributed.get_world_size(process_group) rank = torch.distributed.get_rank(process_group) if in_features % world_size != 0: raise ValueError(f'in_features ({in_features}) must be divisible by ' f'world_size ({world_size})') # Only rank 0 will have bias super().__init__(in_features // world_size, out_features, bias=bias and rank == 0, device=device, dtype=dtype) self.process_group = process_group self.sequence_parallel = sequence_parallel def forward(self, x): """ We're doing Tensor Parallel with sequence parallelism: we do the matmul and then a reduce_scatter of the result. """ out = fused_dense_func(x, self.weight, self.bias) reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce return reduce_fn(out, self.process_group) class FusedMLPFunc(torch.autograd.Function): @staticmethod @custom_fwd def forward(ctx, x, weight1, bias1, weight2, bias2, activation='gelu_approx', save_pre_act=True, return_residual=False, checkpoint_lvl=0, heuristic=0, process_group=None, sequence_parallel=True): """ If process_group is not None and sequence_parallel=True, we're doing Tensor Parallel with sequence parallelism: we do an all_gather of x before doing the matmul. If sequence_parallel=False, then the input is already gathered. checkpoint_lvl: 0: no recomputation in the bwd 1: recompute gelu_out / relu_out in the bwd 2: recompute pre_act and gelu_out / relu_out in the bwd """ assert -1 <= heuristic <= 4 assert activation in ['gelu_approx', 'relu'] if not save_pre_act: checkpoint_lvl = 2 assert checkpoint_lvl in [0, 1, 2] ctx.return_residual = return_residual ctx.process_group = process_group ctx.sequence_parallel = sequence_parallel ctx.checkpoint_lvl = checkpoint_lvl ctx.activation = activation ctx.heuristic = heuristic if torch.is_autocast_enabled(): x = x.to(dtype=torch.get_autocast_gpu_dtype()) x = x.contiguous() if process_group is not None and sequence_parallel: # We want to kick off the all_gather early, before weight dtype conversion total_x, handle_x = all_gather_raw(x, process_group, async_op=True) else: total_x = x if torch.is_autocast_enabled(): dtype = torch.get_autocast_gpu_dtype() weight1, weight2 = [a.to(dtype=dtype) for a in [weight1, weight2]] bias1 = bias1.to(dtype=dtype) if bias1 is not None else None bias2 = bias2.to(dtype=dtype) if bias2 is not None else None weight1 = weight1.contiguous() bias1 = bias1.contiguous() if bias1 is not None else None weight2 = weight2.contiguous() bias2 = bias2.contiguous() if bias2 is not None else None if process_group is not None and sequence_parallel: handle_x.wait() batch_shape, n = total_x.shape[:-1], total_x.shape[-1] batch_dim = batch_shape.numel() # https://github.com/pytorch/pytorch/blob/5b51849b48a7dbccd297286cc0110def4706f9e7/aten/src/ATen/native/cuda/Blas.cpp#L174 if min(batch_dim, n, *weight1.shape, *weight2.shape) > 65535 * 32: raise RuntimeError('fused_dense only supports matrix dims <= 2M') if heuristic == -1: pre_act = F.linear(total_x, weight1, bias1) activation_fn = (partial(F.gelu, approximate='tanh') if activation == 'gelu_approx' else F.relu) output1 = activation_fn(pre_act) # This is before adding bias1 # pre_act = F.linear(total_x.reshape(batch_dim, n), weight1) # with torch.jit.fuser('fuser2'): # output1 = bias_gelu(pre_act, bias1) else: is_gelu = activation == 'gelu_approx' output1, *rest = fused_dense_cuda.linear_act_forward( total_x.reshape(batch_dim, n), weight1, bias1, is_gelu, save_pre_act, heuristic ) if save_pre_act: pre_act = rest[0] output2 = F.linear(output1, weight2, bias2) if checkpoint_lvl == 0 or (checkpoint_lvl == 1 and activation == 'relu'): # For RELU the pre_act is very small (just a bit-mask) so we just save it ctx.save_for_backward(x, weight1, weight2, pre_act, output1) elif checkpoint_lvl == 1: ctx.save_for_backward(x, weight1, weight2, pre_act) elif checkpoint_lvl == 2: ctx.save_for_backward(x, weight1, weight2, bias1) output2 = output2.reshape(*batch_shape, output2.shape[-1]) return output2 if not return_residual else (output2, x) @staticmethod @custom_bwd def backward(ctx, grad_output, *args): grad_output = grad_output.contiguous() checkpoint_lvl = ctx.checkpoint_lvl activation = ctx.activation activation_fn = (partial(F.gelu, approximate='tanh') if activation == 'gelu_approx' else F.relu) if ctx.return_residual: grad_input, = args grad_input = grad_input.contiguous() process_group = ctx.process_group sequence_parallel = ctx.sequence_parallel x, weight1, weight2, *rest = ctx.saved_tensors if process_group is None or not sequence_parallel: total_x = x batch_shape = grad_output.shape[:-1] batch_dim = batch_shape.numel() if checkpoint_lvl in [0, 1]: if process_group is not None and sequence_parallel: total_x, handle_x = all_gather_raw(x, process_group, async_op=True) if checkpoint_lvl == 0 or (checkpoint_lvl == 1 and activation == 'relu'): pre_act, output1 = rest elif checkpoint_lvl == 1: pre_act, = rest output1 = activation_fn(pre_act) elif checkpoint_lvl == 2: bias1, = rest if process_group is not None and sequence_parallel: total_x, _ = all_gather_raw(x, process_group) if ctx.heuristic == -1: pre_act = F.linear(total_x, weight1, bias1) output1 = activation_fn(pre_act) else: output1, pre_act = fused_dense_cuda.linear_act_forward( total_x.reshape(batch_dim, total_x.shape[-1]), weight1, bias1, activation == 'gelu_approx', True, ctx.heuristic ) grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1]) output1 = output1.reshape(batch_dim, output1.shape[-1]) pre_act = pre_act.reshape(batch_dim, pre_act.shape[-1]) if ctx.needs_input_grad[3]: grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad( output1, grad_output, ctx.needs_input_grad[4] ) else: grad_weight2 = None grad_bias2 = grad_output if ctx.needs_input_grad[4] else None if ctx.heuristic == -1: # grad_pre_act = matmul_dgelu(grad_output, weight2, pre_act) grad_output1 = F.linear(grad_output, weight2.t()) with torch.jit.fuser('fuser2'): activation_grad_fn = gelu_bwd if activation == 'gelu_approx' else relu_bwd grad_pre_act = activation_grad_fn(grad_output1, pre_act) else: # The cublasLt epilogue has to compute both gelu/relu grad and bias grad, we can't # just compute gelu/relu grad grad_pre_act, grad_bias1 = fused_dense_cuda.bias_act_linear_dgrad_bgrad( weight2, grad_output, pre_act, activation == 'gelu_approx', ctx.heuristic ) if not ctx.needs_input_grad[2]: grad_bias1 = None if ctx.needs_input_grad[0]: if not ctx.return_residual: grad_input = F.linear(grad_pre_act, weight1.t()) else: grad_input = torch.addmm(grad_input.reshape(batch_dim, grad_input.shape[-1]), grad_pre_act, weight1) grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1]) if process_group is not None: reduce_fn = reduce_scatter_raw if sequence_parallel else all_reduce_raw grad_input, handle_grad_input = reduce_fn(grad_input, process_group, async_op=True) else: grad_input = None if ctx.heuristic == -1: if ctx.needs_input_grad[1]: if process_group is not None and sequence_parallel: handle_x.wait() grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_wgrad( total_x.reshape(batch_dim, total_x.shape[-1]), grad_pre_act, ctx.needs_input_grad[2] ) else: grad_weight1 = None grad_bias1 = grad_pre_act if ctx.needs_input_grad[2] else None else: if ctx.needs_input_grad[1]: if process_group is not None and sequence_parallel: handle_x.wait() grad_weight1 = F.linear(grad_pre_act.t(), total_x.reshape(batch_dim, total_x.shape[-1]).t()) else: grad_weight1 = None if process_group is not None and ctx.needs_input_grad[0]: handle_grad_input.wait() return (grad_input, grad_weight1, grad_bias1, grad_weight2, grad_bias2, None, None, None, None, None, None, None) def fused_mlp_func( x: Tensor, weight1: Tensor, weight2: Tensor, bias1: Optional[Tensor] = None, bias2: Optional[Tensor] = None, activation: str = 'gelu_approx', save_pre_act: bool = True, return_residual: bool = False, checkpoint_lvl: int = 0, heuristic: int = 0, process_group: Optional[ProcessGroup] = None, sequence_parallel: bool = True ): assert activation in ['gelu_approx', 'relu'] dtype_eligible = (x.dtype in [torch.float16, torch.bfloat16] or (x.dtype == torch.float32 and torch.is_autocast_enabled())) # If we save pre-activation, dimension must be divisible by 128 (relu) or 8 (gelu) dim_eligible = not save_pre_act or (x.shape[-1] % (128 if activation == 'relu' else 8) == 0) if (x.is_cuda and weight1.is_cuda and weight2.is_cuda and (bias1 is None or bias1.is_cuda) and (bias2 is None or bias2.is_cuda) and dtype_eligible and dim_eligible): return FusedMLPFunc.apply( x, weight1, bias1, weight2, bias2, activation, save_pre_act, return_residual, checkpoint_lvl, heuristic, process_group, sequence_parallel ) else: assert process_group is None pre_act = F.linear(x, weight1, bias1) activation_fn = (partial(F.gelu, approximate='tanh') if activation == 'gelu_approx' else partial(F.relu, inplace=True)) output1 = activation_fn(pre_act) output2 = F.linear(output1, weight2, bias2) return output2 if not return_residual else (output2, x) class FusedMLP(nn.Module): def __init__(self, in_features, hidden_features, out_features=None, bias1=True, bias2=True, activation='gelu_approx', return_residual=False, checkpoint_lvl=0, heuristic='auto', device=None, dtype=None): """ If process_group is not None, we're doing Tensor Parallel with sequence parallelism: we do an all_gather of x before doing the matmul, gelu, then matmul. Finally we do a reduce_scatter of the output. checkpoint_lvl (increasing lvl means slower but more memory saving): 0: no recomputation in the bwd 1: recompute gelu_out in the bwd 2: recompute pre_act and gelu_out in the bwd heuristic: -1: don't fuse gemm + gelu (separate kernel) 0..4: use this heuristic for the algo section in the fused gemm + gelu 'auto': heuristic will be picked automatically: For CUDA >= 11.8, we set heuristic=0 for both fp16 and bf16 for best perf. For CUDA <= 11.7, we set heuristic=1 for fp16 and heuristic=-1 for bf16. return_residual: whether to return the input x along with the output. This is for performance reason: for post-norm architecture, returning the input allows us to fuse the backward of nn.Linear with the residual connection. """ assert checkpoint_lvl in [0, 1, 2] assert activation in ['gelu_approx', 'relu'] factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() if out_features is None: out_features = in_features self.activation = activation self.return_residual = return_residual self.checkpoint_lvl = checkpoint_lvl self.heuristic = heuristic self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1, **factory_kwargs) self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs) def forward(self, x, process_group=None): dtype = x.dtype if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype() if self.heuristic == 'auto': if self.activation == 'gelu_approx': cuda_ver = tuple(map(int, torch.version.cuda.split('.'))) heuristic = 0 if cuda_ver >= (11, 8) else (1 if dtype == torch.float16 else -1) else: heuristic = 0 else: heuristic = self.heuristic out = fused_mlp_func( x, self.fc1.weight, self.fc2.weight, self.fc1.bias, self.fc2.bias, activation=self.activation, save_pre_act=self.training, return_residual=self.return_residual, checkpoint_lvl=self.checkpoint_lvl, heuristic=heuristic, process_group=process_group ) if self.return_residual: out, x = out if process_group is not None: out = reduce_scatter(out, process_group) return out if not self.return_residual else (out, x) class ParallelFusedMLP(nn.Module): def __init__(self, in_features, hidden_features, out_features=None, activation='gelu_approx', process_group: ProcessGroup = None, bias1=True, bias2=True, sequence_parallel=True, checkpoint_lvl=0, heuristic='auto', device=None, dtype=None): """ process_group is required. We're doing Tensor Parallel with sequence parallelism: we do an all_gather of x before doing the matmul, gelu, then matmul. Finally we do a reduce_scatter of the output. checkpoint_lvl (increasing lvl means slower but more memory saving): 0: no recomputation in the bwd 1: recompute gelu_out in the bwd 2: recompute pre_act and gelu_out in the bwd heuristic: -1: don't fuse gemm + gelu (separate kernel) 0..4: use this heuristic for the algo section in the fused gemm + gelu 'auto': heuristic will be picked automatically: For CUDA >= 11.8, we set heuristic=0 for both fp16 and bf16 for best perf. For CUDA <= 11.7, we set heuristic=1 for fp16 and heuristic=-1 for bf16. """ assert checkpoint_lvl in [0, 1, 2] assert activation in ['gelu_approx', 'relu'] assert process_group is not None factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() if out_features is None: out_features = in_features self.activation = activation self.process_group = process_group self.sequence_parallel = sequence_parallel self.checkpoint_lvl = checkpoint_lvl self.heuristic = heuristic self.fc1 = ColumnParallelLinear(in_features, hidden_features, process_group, bias=bias1, **factory_kwargs) self.fc2 = RowParallelLinear(hidden_features, out_features, process_group, bias=bias2, **factory_kwargs) def forward(self, x): dtype = x.dtype if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype() if self.heuristic == 'auto': if self.activation == 'gelu_approx': cuda_ver = tuple(map(int, torch.version.cuda.split('.'))) heuristic = 0 if cuda_ver >= (11, 8) else (1 if dtype == torch.float16 else -1) else: heuristic = 0 else: heuristic = self.heuristic out = fused_mlp_func( x, self.fc1.weight, self.fc2.weight, self.fc1.bias, self.fc2.bias, activation=self.activation, save_pre_act=self.training, checkpoint_lvl=self.checkpoint_lvl, heuristic=heuristic, process_group=self.process_group, sequence_parallel=self.sequence_parallel ) reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce return reduce_fn(out, self.process_group)