import os import re import time import pytest import torch from einops import rearrange from flash_attn.models.gpt import GPTLMHeadModel, remap_state_dict_hf_gpt2 from flash_attn.models.opt import opt_config_to_gpt2_config, remap_state_dict_hf_opt from flash_attn.utils.generation import update_graph_cache from flash_attn.utils.pretrained import state_dict_from_pretrained from transformers import AutoTokenizer, GPT2Config, GPT2Tokenizer, OPTConfig from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel as GPT2LMHeadModelHF from transformers.models.opt.modeling_opt import OPTForCausalLM @pytest.mark.parametrize("fused_ft_kernel", [False, True]) # @pytest.mark.parametrize('fused_ft_kernel', [True]) @pytest.mark.parametrize("optimized", [False, True]) # @pytest.mark.parametrize('optimized', [False]) @pytest.mark.parametrize("rotary", [False, True]) # @pytest.mark.parametrize('rotary', [False]) @pytest.mark.parametrize("model_name", ["gpt2"]) def test_greedy_decode_gpt2(model_name, rotary, optimized, fused_ft_kernel): """Check that our implementation of GPT2 generation matches the HF implementation: the scores in fp16 should be around the same as the HF scores in fp16, when compared to the HF scores in fp32. """ dtype = torch.float16 device = "cuda" rtol, atol = 3e-3, 3e-1 config = GPT2Config.from_pretrained(model_name) if rotary: config.n_positions = 0 config.rotary_emb_fraction = 0.5 config.rotary_emb_base = 24000 config.residual_in_fp32 = True if optimized: config.use_flash_attn = True config.fused_bias_fc = True config.fused_mlp = True config.fused_dropout_add_ln = True # if not rotary, we load the weight from HF but ignore the position embeddings. # The model would be nonsense but it doesn't matter for the test. model = GPTLMHeadModel.from_pretrained( model_name, config, strict=not rotary, device=device, dtype=dtype ) model.eval() if not rotary: model_ref = GPT2LMHeadModelHF.from_pretrained(model_name).to(device=device) model_hf = GPT2LMHeadModelHF.from_pretrained(model_name, torch_dtype=dtype).to( device=device ) model_ref.eval() model_hf.eval() torch.manual_seed(0) tokenizer = GPT2Tokenizer.from_pretrained("gpt2") input_ids = tokenizer("Hello, my dog is cute and he", return_tensors="pt").input_ids.to( device=device ) max_length = 25 # input_ids = torch.randint(0, 100, (2, 10), dtype=torch.long, device='cuda') # max_length = input_ids.shape[1] + 40 # Slow generation for reference sequences = [] scores = [] cur_input_ids = input_ids with torch.inference_mode(): scores.append(model(cur_input_ids).logits[:, -1]) sequences.append(scores[-1].argmax(dim=-1)) for _ in range(input_ids.shape[1] + 1, max_length): cur_input_ids = torch.cat([cur_input_ids, rearrange(sequences[-1], "b -> b 1")], dim=-1) scores.append(model(cur_input_ids).logits[:, -1]) sequences.append(scores[-1].argmax(dim=-1)) sequences = torch.cat([input_ids, torch.stack(sequences, dim=1)], dim=1) scores = tuple(scores) out = model.generate( input_ids=input_ids, max_length=max_length, fused_ft_kernel=fused_ft_kernel, return_dict_in_generate=True, output_scores=True, timing=True, ) print(out.sequences) print(tokenizer.batch_decode(out.sequences.tolist())) if fused_ft_kernel: out_cg = model.generate( input_ids=input_ids, max_length=max_length, fused_ft_kernel=fused_ft_kernel, cg=True, return_dict_in_generate=True, output_scores=True, timing=True, ) print(out_cg.sequences) if not rotary: out_hf = model_hf.generate( input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True, ) out_ref = model_ref.generate( input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True, ) print( f"Scores max diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}" ) print( f"Scores mean diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}" ) print( f"HF fp16 max diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}" ) print( f"HF fp16 mean diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}" ) print(tokenizer.batch_decode(out_ref.sequences.tolist())) assert torch.all(out.sequences == sequences) assert torch.allclose( torch.stack(out.scores, dim=1), torch.stack(scores, dim=1), rtol=rtol, atol=atol ) if not rotary: assert torch.all(out.sequences == out_ref.sequences) assert torch.all(out.sequences == out_hf.sequences) assert ( torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1) ).abs().max().item() < 3 * ( torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1) ).abs().max().item() @pytest.mark.parametrize( "model_name", [ "facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b", "facebook/opt-2.7b", "facebook/opt-6.7b", ], ) # @pytest.mark.parametrize('model_name', ["facebook/opt-125m"]) def test_greedy_decode_opt(model_name): """Check that our implementation of OPT generation matches the HF implementation: the scores in fp16 should be around the same as the HF scores in fp16, when compared to the HF scores in fp32. """ print(f"\nMODEL: {model_name}") verbose = False dtype = torch.float16 device = "cuda" rtol, atol = 3e-3, 3e-1 fused_ft_kernel = True config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name)) # Only prenorm supports residual_in_fp32 config.residual_in_fp32 = getattr(config, "prenorm", True) config.use_flash_attn = True config.fused_bias_fc = True config.fused_mlp = True config.fused_dropout_add_ln = True model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype) model.eval() torch.manual_seed(0) # OPT tokenizer requires use_fast=False # https://huggingface.co/docs/transformers/model_doc/opt tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) eos_token_id = tokenizer.eos_token_id input_ids = tokenizer("Hello, my dog is cute and he", return_tensors="pt").input_ids.to( device=device ) max_length = 25 # input_ids = torch.randint(0, 100, (2, 10), dtype=torch.long, device='cuda') # max_length = input_ids.shape[1] + 40 # Slow generation for reference sequences = [] scores = [] cur_input_ids = input_ids with torch.inference_mode(): scores.append(model(cur_input_ids).logits[:, -1]) sequences.append(scores[-1].argmax(dim=-1)) for _ in range(input_ids.shape[1] + 1, max_length): cur_input_ids = torch.cat([cur_input_ids, rearrange(sequences[-1], "b -> b 1")], dim=-1) scores.append(model(cur_input_ids).logits[:, -1]) sequences.append(scores[-1].argmax(dim=-1)) if eos_token_id is not None and (sequences[-1] == eos_token_id).all(): break sequences = torch.cat([input_ids, torch.stack(sequences, dim=1)], dim=1) scores = tuple(scores) print("Without CUDA graph") torch.cuda.synchronize() start = time.time() out = model.generate( input_ids=input_ids, max_length=max_length, eos_token_id=eos_token_id, fused_ft_kernel=fused_ft_kernel, return_dict_in_generate=True, output_scores=True, timing=True, ) torch.cuda.synchronize() print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") if verbose: print(out.sequences) print(tokenizer.batch_decode(out.sequences.tolist())) if fused_ft_kernel: # Capture graph outside the timing loop batch_size, seqlen_og = input_ids.shape model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length) print("With CUDA graph") torch.cuda.synchronize() start = time.time() out_cg = model.generate( input_ids=input_ids, max_length=max_length, fused_ft_kernel=fused_ft_kernel, cg=True, return_dict_in_generate=True, output_scores=True, timing=True, ) torch.cuda.synchronize() print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") if verbose: print(out_cg.sequences) print(tokenizer.batch_decode(out_cg.sequences.tolist())) del model model_hf = OPTForCausalLM.from_pretrained(model_name, torch_dtype=dtype).to(device=device) model_hf.eval() print("HF fp16") torch.cuda.synchronize() start = time.time() out_hf = model_hf.generate( input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True ) torch.cuda.synchronize() print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") del model_hf model_ref = OPTForCausalLM.from_pretrained(model_name).to(device=device) model_ref.eval() print("HF fp32") torch.cuda.synchronize() start = time.time() out_ref = model_ref.generate( input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True ) torch.cuda.synchronize() print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") del model_ref print(tokenizer.batch_decode(out_ref.sequences.tolist())) if verbose: print( f"Scores max diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}" ) print( f"Scores mean diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}" ) print( f"HF fp16 max diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}" ) print( f"HF fp16 mean diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}" ) assert torch.all(out.sequences == sequences) assert torch.allclose( torch.stack(out.scores, dim=1), torch.stack(scores, dim=1), rtol=rtol, atol=atol ) assert torch.all(out.sequences == out_ref.sequences) assert torch.all(out.sequences == out_hf.sequences) assert (torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item() < 3 * ( torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1) ).abs().max().item()