202 lines
7.6 KiB
Python
202 lines
7.6 KiB
Python
# [2022-10-23] Copied from https://github.com/NVIDIA/apex/blob/master/apex/transformer/functional/fused_softmax.py
|
|
# for benchmarking.
|
|
# We added support for seqlen=2k and seqlen=4k
|
|
|
|
# coding=utf-8
|
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import torch
|
|
from apex._autocast_utils import _cast_if_autocast_enabled
|
|
from apex.transformer.enums import AttnMaskType
|
|
from fused_softmax_lib import (
|
|
scaled_masked_softmax_backward,
|
|
scaled_masked_softmax_forward,
|
|
scaled_masked_softmax_get_batch_per_block,
|
|
scaled_upper_triang_masked_softmax_backward,
|
|
scaled_upper_triang_masked_softmax_forward,
|
|
)
|
|
|
|
|
|
class ScaledUpperTriangMaskedSoftmax(torch.autograd.Function):
|
|
"""
|
|
Fused operation which performs following three operations in sequence
|
|
1. Scale the tensor.
|
|
2. Apply upper triangular mask (typically used in gpt models).
|
|
3. Perform softmax.
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, inputs, scale):
|
|
scale_t = torch.tensor([scale])
|
|
softmax_results = scaled_upper_triang_masked_softmax_forward(inputs, scale_t[0])
|
|
ctx.save_for_backward(softmax_results, scale_t)
|
|
return softmax_results
|
|
|
|
@staticmethod
|
|
def backward(ctx, output_grads):
|
|
softmax_results, scale_t = ctx.saved_tensors
|
|
input_grads = scaled_upper_triang_masked_softmax_backward(
|
|
output_grads, softmax_results, scale_t[0]
|
|
)
|
|
return input_grads, None
|
|
|
|
|
|
def scaled_upper_triang_masked_softmax(inputs, _, scale):
|
|
b, np, sq, sk = inputs.size()
|
|
assert sq == sk, "causal mask is only for self attention"
|
|
# Reshaping input to 3D tensor (attn_batches, sq, sk)
|
|
inputs = inputs.view(-1, sq, sk)
|
|
args = _cast_if_autocast_enabled(inputs, scale)
|
|
with torch.cuda.amp.autocast(enabled=False):
|
|
probs = ScaledUpperTriangMaskedSoftmax.apply(*args)
|
|
return probs.view(b, np, sq, sk)
|
|
|
|
|
|
# NOTE (mkozuki): `ScaledMaskedSoftmax` somehow doesn't work well with `torch.cuda.amp.custom_fwd`.
|
|
# Without `cast_inputs` kwarg, somehow inputs are not cast to dtype used in the autocast context.
|
|
# So I needed to manually write two `torch.autograd.Function` inheritances.
|
|
# Fused operation which performs following three operations in sequence
|
|
# 1. Scale the tensor.
|
|
# 2. Apply the mask.
|
|
# 3. Perform softmax.
|
|
class ScaledMaskedSoftmax(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, inputs, mask, scale):
|
|
scale_t = torch.tensor([scale])
|
|
softmax_results = scaled_masked_softmax_forward(inputs, mask, scale_t[0])
|
|
ctx.save_for_backward(softmax_results, scale_t)
|
|
return softmax_results
|
|
|
|
@staticmethod
|
|
def backward(ctx, output_grads):
|
|
softmax_results, scale_t = ctx.saved_tensors
|
|
input_grads = scaled_masked_softmax_backward(output_grads, softmax_results, scale_t[0])
|
|
return input_grads, None, None
|
|
|
|
|
|
def scaled_masked_softmax(inputs, mask, scale):
|
|
# input is 4D tensor (b, np, sq, sk)
|
|
args = _cast_if_autocast_enabled(inputs, mask, scale)
|
|
with torch.cuda.amp.autocast(enabled=False):
|
|
return ScaledMaskedSoftmax.apply(*args)
|
|
|
|
|
|
class FusedScaleMaskSoftmax(torch.nn.Module):
|
|
"""
|
|
fused operation: scaling + mask + softmax
|
|
|
|
Arguments:
|
|
input_in_fp16: flag to indicate if input in fp16 data format.
|
|
input_in_bf16: flag to indicate if input in bf16 data format.
|
|
attn_mask_type: attention mask type (pad or causal)
|
|
scaled_masked_softmax_fusion: flag to indicate user want to use softmax fusion
|
|
mask_func: mask function to be applied.
|
|
softmax_in_fp32: if true, softmax in performed at fp32 precision.
|
|
scale: scaling factor used in input tensor scaling.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
input_in_fp16,
|
|
input_in_bf16,
|
|
attn_mask_type,
|
|
scaled_masked_softmax_fusion,
|
|
mask_func,
|
|
softmax_in_fp32,
|
|
scale,
|
|
):
|
|
super().__init__()
|
|
self.input_in_fp16 = input_in_fp16
|
|
self.input_in_bf16 = input_in_bf16
|
|
if self.input_in_fp16 and self.input_in_bf16:
|
|
raise RuntimeError("both fp16 and bf16 flags cannot be active at the same time.")
|
|
self.input_in_float16 = self.input_in_fp16 or self.input_in_bf16
|
|
self.attn_mask_type = attn_mask_type
|
|
self.scaled_masked_softmax_fusion = scaled_masked_softmax_fusion
|
|
self.mask_func = mask_func
|
|
self.softmax_in_fp32 = softmax_in_fp32
|
|
self.scale = scale
|
|
|
|
if not (self.scale is None or softmax_in_fp32):
|
|
raise RuntimeError("softmax should be in fp32 when scaled")
|
|
|
|
if self.scaled_masked_softmax_fusion:
|
|
if self.attn_mask_type == AttnMaskType.causal:
|
|
self.fused_softmax_func = scaled_upper_triang_masked_softmax
|
|
elif self.attn_mask_type == AttnMaskType.padding:
|
|
self.fused_softmax_func = scaled_masked_softmax
|
|
else:
|
|
raise ValueError("Invalid attn_mask_type.")
|
|
|
|
def forward(self, input, mask):
|
|
# [b, np, sq, sk]
|
|
assert input.dim() == 4
|
|
|
|
if self.is_kernel_available(mask, *input.size()):
|
|
return self.forward_fused_softmax(input, mask)
|
|
else:
|
|
return self.forward_torch_softmax(input, mask)
|
|
|
|
def is_kernel_available(self, mask, b, np, sq, sk):
|
|
attn_batches = b * np
|
|
|
|
if (
|
|
self.scaled_masked_softmax_fusion # user want to fuse
|
|
and self.input_in_float16 # input must be fp16
|
|
and (
|
|
self.attn_mask_type == AttnMaskType.causal
|
|
or (self.attn_mask_type == AttnMaskType.padding and mask is not None)
|
|
)
|
|
and 16 < sk <= 8192 # sk must be 16 ~ 8192
|
|
and sq % 4 == 0 # sq must be divisor of 4
|
|
and sk % 4 == 0 # sk must be divisor of 4
|
|
and attn_batches % 4 == 0 # np * b must be divisor of 4
|
|
):
|
|
if 0 <= sk <= 8192:
|
|
batch_per_block = self.get_batch_per_block(sq, sk, b, np)
|
|
|
|
if self.attn_mask_type == AttnMaskType.causal:
|
|
if attn_batches % batch_per_block == 0:
|
|
return True
|
|
else:
|
|
if sq % batch_per_block == 0:
|
|
return True
|
|
return False
|
|
|
|
def forward_fused_softmax(self, input, mask):
|
|
# input.shape = [b, np, sq, sk]
|
|
scale = self.scale if self.scale is not None else 1.0
|
|
return self.fused_softmax_func(input, mask, scale)
|
|
|
|
def forward_torch_softmax(self, input, mask):
|
|
if self.input_in_float16 and self.softmax_in_fp32:
|
|
input = input.float()
|
|
|
|
if self.scale is not None:
|
|
input = input * self.scale
|
|
mask_output = self.mask_func(input, mask) if mask is not None else input
|
|
probs = torch.nn.Softmax(dim=-1)(mask_output)
|
|
|
|
if self.input_in_float16 and self.softmax_in_fp32:
|
|
if self.input_in_fp16:
|
|
probs = probs.half()
|
|
else:
|
|
probs = probs.bfloat16()
|
|
|
|
return probs
|
|
|
|
@staticmethod
|
|
def get_batch_per_block(sq, sk, b, np):
|
|
return scaled_masked_softmax_get_batch_per_block(sq, sk, b, np)
|