185 lines
7.1 KiB
Python
185 lines
7.1 KiB
Python
# Copyright (c) 2023, Tri Dao.
|
|
|
|
import time
|
|
|
|
import pytest
|
|
import torch
|
|
from flash_attn.models.gpt import GPTLMHeadModel
|
|
from flash_attn.models.gptj import gptj_config_to_gpt2_config, remap_state_dict_hf_gptj
|
|
from flash_attn.utils.generation import update_graph_cache
|
|
from flash_attn.utils.pretrained import state_dict_from_pretrained
|
|
from transformers import AutoTokenizer, GPTJConfig
|
|
from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
|
|
|
|
|
|
@pytest.mark.parametrize("model_name", ["EleutherAI/gpt-j-6B"])
|
|
def test_gptj_state_dict(model_name):
|
|
config = gptj_config_to_gpt2_config(GPTJConfig.from_pretrained(model_name))
|
|
pretrained_state_dict = remap_state_dict_hf_gptj(state_dict_from_pretrained(model_name), config)
|
|
model = GPTLMHeadModel(config, device="meta") # Without device='meta' init is very slow
|
|
state_dict = model.state_dict()
|
|
assert state_dict.keys() == pretrained_state_dict.keys()
|
|
for k in state_dict.keys():
|
|
assert state_dict[k].shape == pretrained_state_dict[k].shape
|
|
|
|
|
|
@pytest.mark.parametrize("model_name", ["EleutherAI/gpt-j-6B", "togethercomputer/GPT-JT-6B-v1"])
|
|
def test_gptj_optimized(model_name):
|
|
"""Check that our implementation of GPT-J (with all optimizations enabled) matches the
|
|
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
|
|
forward pass in fp16, when compared to the HF forward pass in fp32.
|
|
"""
|
|
dtype = torch.float16
|
|
device = "cuda"
|
|
config = gptj_config_to_gpt2_config(GPTJConfig.from_pretrained(model_name))
|
|
config.use_flash_attn = True # FlashAttention-2 supports headdim 256
|
|
config.fused_bias_fc = True
|
|
config.fused_mlp = True
|
|
config.fused_dropout_add_ln = True
|
|
config.residual_in_fp32 = True
|
|
|
|
model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
|
|
model.eval()
|
|
|
|
torch.manual_seed(0)
|
|
batch_size = 2
|
|
max_seqlen = 256
|
|
input_ids = torch.randint(
|
|
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
|
|
)
|
|
with torch.no_grad():
|
|
out = model.transformer(input_ids)
|
|
logits = model(input_ids).logits
|
|
del model
|
|
|
|
# Without device_map, the model is loaded on the CPU, which is very slow
|
|
model_ref = GPTJForCausalLM.from_pretrained(model_name, device_map={"": device})
|
|
model_ref.eval()
|
|
with torch.no_grad():
|
|
out_ref = model_ref.transformer(input_ids).last_hidden_state
|
|
logits_ref = model_ref(input_ids).logits
|
|
del model_ref
|
|
|
|
model_hf = GPTJForCausalLM.from_pretrained(
|
|
model_name, torch_dtype=dtype, device_map={"": device}
|
|
)
|
|
model_hf.eval()
|
|
out_hf = model_hf.transformer(input_ids).last_hidden_state
|
|
logits_hf = model_hf(input_ids).logits
|
|
del model_hf
|
|
|
|
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
|
|
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
|
|
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
|
|
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
|
|
assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()
|
|
|
|
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
|
|
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
|
|
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
|
|
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
|
|
assert (logits - logits_ref).abs().max().item() < 3 * (
|
|
logits_hf - logits_ref
|
|
).abs().max().item()
|
|
|
|
|
|
@pytest.mark.parametrize("model_name", ["EleutherAI/gpt-j-6B"])
|
|
def test_gptj_generation(model_name):
|
|
"""Check that our implementation of GPT-J (with all optimizations enabled) matches the
|
|
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
|
|
forward pass in fp16, when compared to the HF forward pass in fp32.
|
|
"""
|
|
dtype = torch.float16
|
|
device = "cuda"
|
|
config = gptj_config_to_gpt2_config(GPTJConfig.from_pretrained(model_name))
|
|
config.use_flash_attn = True # FlashAttention-2 supports headdim 256
|
|
config.fused_bias_fc = True
|
|
config.fused_mlp = True
|
|
config.fused_dropout_add_ln = True
|
|
# Only prenorm supports residual_in_fp32
|
|
config.residual_in_fp32 = True
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
eos_token_id = tokenizer.eos_token_id
|
|
|
|
torch.manual_seed(0)
|
|
batch_size = 1
|
|
seqlen = 100
|
|
max_length = 150
|
|
input_ids = torch.randint(
|
|
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
|
|
)
|
|
|
|
model_hf = GPTJForCausalLM.from_pretrained(
|
|
model_name, torch_dtype=dtype, device_map={"": device}
|
|
)
|
|
model_hf.eval()
|
|
print("HF fp16")
|
|
torch.cuda.synchronize()
|
|
start = time.time()
|
|
out_hf = model_hf.generate(
|
|
input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True
|
|
)
|
|
torch.cuda.synchronize()
|
|
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
|
|
del model_hf
|
|
|
|
model_ref = GPTJForCausalLM.from_pretrained(model_name, device_map={"": device})
|
|
model_ref.eval()
|
|
with torch.no_grad():
|
|
logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1]
|
|
del model_ref
|
|
|
|
model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
|
|
model.eval()
|
|
|
|
print("Without CUDA graph")
|
|
torch.cuda.synchronize()
|
|
start = time.time()
|
|
out = model.generate(
|
|
input_ids=input_ids,
|
|
max_length=max_length,
|
|
eos_token_id=eos_token_id,
|
|
return_dict_in_generate=True,
|
|
output_scores=True,
|
|
enable_timing=True,
|
|
teacher_outputs=out_hf.sequences,
|
|
)
|
|
torch.cuda.synchronize()
|
|
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
|
|
|
|
# Capture graph outside the timing loop
|
|
batch_size, seqlen_og = input_ids.shape
|
|
model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
|
|
print("With CUDA graph")
|
|
torch.cuda.synchronize()
|
|
start = time.time()
|
|
out_cg = model.generate(
|
|
input_ids=input_ids,
|
|
max_length=max_length,
|
|
cg=True,
|
|
return_dict_in_generate=True,
|
|
output_scores=True,
|
|
enable_timing=True,
|
|
teacher_outputs=out_hf.sequences,
|
|
)
|
|
torch.cuda.synchronize()
|
|
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
|
|
|
|
with torch.no_grad():
|
|
logits_parallel = model(out_hf.sequences).logits[:, (seqlen - 1) : -1]
|
|
logits_hf = torch.stack(out_hf.scores, dim=1)
|
|
logits = torch.stack(out.scores, dim=1)
|
|
logits_cg = torch.stack(out_cg.scores, dim=1)
|
|
|
|
del model
|
|
|
|
hf_error = (logits_hf - logits_ref).abs().max().item()
|
|
assert (logits_parallel - logits_ref).abs().max().item() < 2 * hf_error
|
|
|
|
print(f"HF fp16 logits max diff: {hf_error}")
|
|
print(f"Logits max diff: {(logits - logits_ref).abs().max().item() }")
|
|
assert (logits - logits_ref).abs().max().item() < 2 * hf_error
|
|
print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }")
|
|
assert torch.equal(logits_cg, logits)
|