634 lines
26 KiB
Python
634 lines
26 KiB
Python
# Copyright (c) 2023, Tri Dao.
|
|
|
|
# To run the huggingface implementation of LLaMa (1), we first need to convert the weights:
|
|
# https://github.com/huggingface/transformers/pull/21955
|
|
# python -m transformers.models.llama.convert_llama_weights_to_hf --input_dir $CHECKPOINT_DIR/llama --model_size 7B --output_dir $CHECKPOINT_DIR/llama/7B-hf
|
|
# and repeat for 13B, 30B, 65B
|
|
|
|
import os
|
|
import time
|
|
from pathlib import Path
|
|
|
|
current_dir = Path(__file__).parent.absolute()
|
|
|
|
import shutil
|
|
|
|
import pytest
|
|
import torch
|
|
from einops import rearrange
|
|
from flash_attn.models.gpt import GPTLMHeadModel, combine_state_dicts_tp, shard_state_dict_tp
|
|
from flash_attn.models.llama import (
|
|
config_from_checkpoint,
|
|
inv_remap_state_dict_hf_llama,
|
|
llama_config_to_gpt2_config,
|
|
remap_state_dict_hf_llama,
|
|
remap_state_dict_meta_llama,
|
|
state_dicts_from_checkpoint,
|
|
)
|
|
from flash_attn.utils.distributed import all_gather_raw
|
|
from flash_attn.utils.generation import update_graph_cache
|
|
from flash_attn.utils.pretrained import state_dict_from_pretrained
|
|
from transformers import LlamaConfig, LlamaTokenizer
|
|
from transformers.models.llama.modeling_llama import LlamaForCausalLM
|
|
from transformers import AutoConfig
|
|
|
|
|
|
def _pretrained_state_dict_from_checkpoint(checkpoint_path, model_name, config, checkpoint_format):
|
|
if checkpoint_format == "meta":
|
|
ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name)
|
|
pretrained_state_dicts = [remap_state_dict_meta_llama(s, config) for s in ckpt_state_dicts]
|
|
pretrained_state_dict = combine_state_dicts_tp(pretrained_state_dicts, config)
|
|
else:
|
|
pretrained_state_dict = state_dict_from_pretrained(
|
|
Path(checkpoint_path) / f"{model_name}-hf"
|
|
)
|
|
pretrained_state_dict = remap_state_dict_hf_llama(pretrained_state_dict, config)
|
|
return pretrained_state_dict
|
|
|
|
|
|
@pytest.mark.parametrize("model_name", ["7B"])
|
|
def test_llama_state_dict(model_name):
|
|
checkpoint_path = (
|
|
Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
|
|
)
|
|
config = llama_config_to_gpt2_config(config_from_checkpoint(checkpoint_path, model_name))
|
|
ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name)
|
|
pretrained_state_dict = remap_state_dict_meta_llama(ckpt_state_dicts[0], config)
|
|
model = GPTLMHeadModel(config, device="meta") # Without device='meta' init is very slow
|
|
state_dict = model.state_dict()
|
|
assert state_dict.keys() == pretrained_state_dict.keys()
|
|
for k in state_dict.keys():
|
|
assert state_dict[k].shape == pretrained_state_dict[k].shape
|
|
|
|
|
|
# TinyLlama-1.1B is to test MQA
|
|
@pytest.mark.parametrize(
|
|
"model_name", ["meta-llama/Llama-2-7b-hf", "PY007/TinyLlama-1.1B-step-50K-105b"]
|
|
)
|
|
def test_inv_remap_state_dict_hf_llama(model_name):
|
|
config = llama_config_to_gpt2_config(
|
|
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
|
)
|
|
state_dict = state_dict_from_pretrained(model_name)
|
|
# inv_remap_state_dict_hf_llama should be the inverse of remap_state_dict_hf_llama
|
|
state_dict = {key: val for key, val in state_dict.items() if "rotary_emb.inv_freq" not in key}
|
|
pretrained_state_dict = remap_state_dict_hf_llama(state_dict, config)
|
|
state_dict_recover = inv_remap_state_dict_hf_llama(pretrained_state_dict, config)
|
|
assert set(state_dict_recover.keys()) == set(state_dict.keys())
|
|
for key in state_dict_recover.keys():
|
|
torch.testing.assert_close(state_dict_recover[key], state_dict[key])
|
|
|
|
|
|
# TinyLlama-1.1B is to test MQA
|
|
@pytest.mark.parametrize(
|
|
"model_name",
|
|
[
|
|
"7B", # Llama 1
|
|
"13B", # Llama 1
|
|
"meta-llama/Llama-2-13b-hf",
|
|
"codellama/CodeLlama-7b-hf",
|
|
"codellama/CodeLlama-13b-hf",
|
|
"codellama/CodeLlama-34b-hf",
|
|
"PY007/TinyLlama-1.1B-step-50K-105b",
|
|
],
|
|
)
|
|
def test_llama_optimized(model_name):
|
|
"""Check that our implementation of LLaMa (with all optimizations enabled) matches the
|
|
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
|
|
forward pass in fp16, when compared to the HF forward pass in fp32.
|
|
"""
|
|
checkpoint_path = (
|
|
Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
|
|
)
|
|
|
|
dtype = torch.float16
|
|
device = "cuda"
|
|
if "/" in model_name: # Download from HF
|
|
config = llama_config_to_gpt2_config(
|
|
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
|
)
|
|
else:
|
|
config = config_from_checkpoint(checkpoint_path, model_name, checkpoint_format="meta")
|
|
config = llama_config_to_gpt2_config(config)
|
|
config.use_flash_attn = True
|
|
config.fused_bias_fc = True
|
|
config.fused_mlp = False # We don't have fused GatedMLP yet
|
|
config.fused_dropout_add_ln = True
|
|
config.residual_in_fp32 = True
|
|
|
|
if "/" in model_name: # Download from HF
|
|
pretrained_state_dict = remap_state_dict_hf_llama(
|
|
state_dict_from_pretrained(model_name), config
|
|
)
|
|
else:
|
|
pretrained_state_dict = _pretrained_state_dict_from_checkpoint(
|
|
checkpoint_path, model_name, config, checkpoint_format="meta"
|
|
)
|
|
model = GPTLMHeadModel(config, device=device, dtype=dtype)
|
|
model.load_state_dict(pretrained_state_dict)
|
|
model.eval()
|
|
|
|
torch.manual_seed(0)
|
|
batch_size = 2
|
|
max_seqlen = 256
|
|
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
|
|
input_ids = torch.randint(
|
|
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
|
|
)
|
|
with torch.no_grad():
|
|
out = model.transformer(input_ids)
|
|
logits = model(input_ids).logits
|
|
del model
|
|
|
|
# Without device_map, the model is loaded on the CPU, which is very slow
|
|
# Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB
|
|
model_ref = LlamaForCausalLM.from_pretrained(
|
|
model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
|
|
device_map="auto",
|
|
)
|
|
model_ref.eval()
|
|
with torch.no_grad():
|
|
out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device)
|
|
logits_ref = model_ref(input_ids).logits.to(device=device)
|
|
del model_ref
|
|
|
|
model_hf = LlamaForCausalLM.from_pretrained(
|
|
model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
|
|
torch_dtype=dtype,
|
|
device_map={"": device},
|
|
)
|
|
model_hf.eval()
|
|
with torch.no_grad():
|
|
out_hf = model_hf.model(input_ids).last_hidden_state
|
|
logits_hf = model_hf(input_ids).logits
|
|
del model_hf
|
|
|
|
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
|
|
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
|
|
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
|
|
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
|
|
assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()
|
|
|
|
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
|
|
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
|
|
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
|
|
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
|
|
assert (logits - logits_ref).abs().max().item() < 3 * (
|
|
logits_hf - logits_ref
|
|
).abs().max().item()
|
|
|
|
|
|
# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_llama.py -k "parallel"
|
|
@pytest.mark.parametrize("world_size", [2])
|
|
@pytest.mark.parametrize(
|
|
"model_name", ["13B", "meta-llama/Llama-2-13b-hf", "codellama/CodeLlama-34b-hf"]
|
|
)
|
|
def test_llama_parallel(model_name, world_size):
|
|
"""Check that our implementation of LLaMa (with all optimizations enabled) matches the
|
|
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
|
|
forward pass in fp16, when compared to the HF forward pass in fp32.
|
|
"""
|
|
from apex.transformer import parallel_state
|
|
|
|
checkpoint_path = (
|
|
Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
|
|
)
|
|
|
|
dtype = torch.float16
|
|
if "/" in model_name: # Download from HF
|
|
config = llama_config_to_gpt2_config(
|
|
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
|
)
|
|
else:
|
|
config = config_from_checkpoint(checkpoint_path, model_name, checkpoint_format="meta")
|
|
config = llama_config_to_gpt2_config(config)
|
|
config.use_flash_attn = True
|
|
config.fused_bias_fc = True
|
|
config.fused_mlp = False # We don't have fused GatedMLP yet
|
|
config.fused_dropout_add_ln = True
|
|
config.residual_in_fp32 = True
|
|
|
|
if not torch.distributed.is_initialized():
|
|
torch.distributed.init_process_group(backend="nccl", init_method="env://")
|
|
device = f"cuda:{torch.distributed.get_rank()}"
|
|
assert world_size <= torch.distributed.get_world_size()
|
|
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
|
|
rank = parallel_state.get_tensor_model_parallel_rank()
|
|
process_group = parallel_state.get_tensor_model_parallel_group()
|
|
|
|
if "/" in model_name: # Download from HF
|
|
pretrained_state_dict = remap_state_dict_hf_llama(
|
|
state_dict_from_pretrained(model_name), config
|
|
)
|
|
else:
|
|
pretrained_state_dict = _pretrained_state_dict_from_checkpoint(
|
|
checkpoint_path, model_name, config, checkpoint_format="meta"
|
|
)
|
|
model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
|
|
model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
|
|
model.eval()
|
|
|
|
torch.manual_seed(0)
|
|
batch_size = 2
|
|
max_seqlen = 256
|
|
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
|
|
input_ids = torch.randint(
|
|
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
|
|
)
|
|
with torch.no_grad():
|
|
out = model.transformer(input_ids)
|
|
out, _ = all_gather_raw(out, process_group=process_group)
|
|
out = rearrange(out, "(b s) d -> b s d", b=batch_size)
|
|
logits = model(input_ids).logits
|
|
logits = rearrange(logits, "(b s) d -> b s d", b=batch_size)
|
|
logits, _ = all_gather_raw(logits, process_group)
|
|
logits = rearrange(logits, "(n b) ... d -> b ... (n d)", b=batch_size)
|
|
del model
|
|
|
|
if rank == 0:
|
|
# Without device_map, the model is loaded on the CPU, which is very slow
|
|
model_ref = LlamaForCausalLM.from_pretrained(
|
|
model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
|
|
device_map="auto",
|
|
)
|
|
model_ref.eval()
|
|
with torch.no_grad():
|
|
out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device)
|
|
logits_ref = model_ref(input_ids).logits.to(device=device)
|
|
del model_ref
|
|
|
|
model_hf = LlamaForCausalLM.from_pretrained(
|
|
model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
|
|
torch_dtype=dtype,
|
|
device_map="auto",
|
|
)
|
|
model_hf.eval()
|
|
with torch.no_grad():
|
|
out_hf = model_hf.model(input_ids).last_hidden_state.to(device=device)
|
|
logits_hf = model_hf(input_ids).logits.to(device=device)
|
|
del model_hf
|
|
|
|
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
|
|
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
|
|
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
|
|
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
|
|
assert (out - out_ref).abs().max().item() < 2 * (out_hf - out_ref).abs().max().item()
|
|
|
|
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
|
|
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
|
|
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
|
|
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
|
|
assert (logits - logits_ref).abs().max().item() < 2 * (
|
|
logits_hf - logits_ref
|
|
).abs().max().item()
|
|
|
|
|
|
# @pytest.mark.parametrize('model_name', ["7B", "13B"])
|
|
@pytest.mark.parametrize("model_name", ["7B"])
|
|
@pytest.mark.parametrize("checkpoint_format", ["meta", "hf"])
|
|
def test_llama_generation(model_name, checkpoint_format):
|
|
checkpoint_path = (
|
|
Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
|
|
)
|
|
|
|
dtype = torch.float16
|
|
device = "cuda"
|
|
config = config_from_checkpoint(checkpoint_path, model_name, checkpoint_format)
|
|
config = llama_config_to_gpt2_config(config)
|
|
config.use_flash_attn = True
|
|
config.fused_bias_fc = True
|
|
config.fused_mlp = False # We don't have fused GatedMLP yet
|
|
config.fused_dropout_add_ln = True
|
|
config.residual_in_fp32 = True
|
|
|
|
tokenizer = LlamaTokenizer.from_pretrained(Path(checkpoint_path) / f"{model_name}-hf")
|
|
eos_token_id = tokenizer.eos_token_id
|
|
|
|
torch.manual_seed(0)
|
|
batch_size = 1
|
|
seqlen = 100
|
|
max_length = 150
|
|
input_ids = torch.randint(
|
|
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
|
|
)
|
|
|
|
model_hf = LlamaForCausalLM.from_pretrained(
|
|
Path(checkpoint_path) / f"{model_name}-hf", torch_dtype=dtype, device_map={"": device}
|
|
)
|
|
model_hf.eval()
|
|
print("HF fp16")
|
|
torch.cuda.synchronize()
|
|
start = time.time()
|
|
out_hf = model_hf.generate(
|
|
input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True
|
|
)
|
|
torch.cuda.synchronize()
|
|
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
|
|
del model_hf
|
|
|
|
# Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB
|
|
model_ref = LlamaForCausalLM.from_pretrained(
|
|
Path(checkpoint_path) / f"{model_name}-hf", device_map="auto"
|
|
)
|
|
model_ref.eval()
|
|
with torch.no_grad():
|
|
logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1].to(device=device)
|
|
del model_ref
|
|
|
|
pretrained_state_dict = _pretrained_state_dict_from_checkpoint(
|
|
checkpoint_path, model_name, config, checkpoint_format
|
|
)
|
|
model = GPTLMHeadModel(config, device=device, dtype=dtype)
|
|
model.load_state_dict(pretrained_state_dict)
|
|
model.eval()
|
|
|
|
print("Without CUDA graph")
|
|
torch.cuda.synchronize()
|
|
start = time.time()
|
|
out = model.generate(
|
|
input_ids=input_ids,
|
|
max_length=max_length,
|
|
eos_token_id=eos_token_id,
|
|
return_dict_in_generate=True,
|
|
output_scores=True,
|
|
enable_timing=True,
|
|
teacher_outputs=out_hf.sequences,
|
|
)
|
|
torch.cuda.synchronize()
|
|
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
|
|
|
|
# Capture graph outside the timing loop
|
|
batch_size, seqlen_og = input_ids.shape
|
|
model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
|
|
print("With CUDA graph")
|
|
torch.cuda.synchronize()
|
|
start = time.time()
|
|
out_cg = model.generate(
|
|
input_ids=input_ids,
|
|
max_length=max_length,
|
|
cg=True,
|
|
return_dict_in_generate=True,
|
|
output_scores=True,
|
|
enable_timing=True,
|
|
teacher_outputs=out_hf.sequences,
|
|
)
|
|
torch.cuda.synchronize()
|
|
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
|
|
|
|
with torch.no_grad():
|
|
logits_parallel = model(out_hf.sequences).logits[:, (seqlen - 1) : -1]
|
|
logits_hf = torch.stack(out_hf.scores, dim=1)
|
|
logits = torch.stack(out.scores, dim=1)
|
|
logits_cg = torch.stack(out_cg.scores, dim=1)
|
|
|
|
del model
|
|
|
|
hf_error = (logits_hf - logits_ref).abs().max().item()
|
|
|
|
print(f"HF fp16 logits max diff: {hf_error}")
|
|
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
|
|
print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item()}")
|
|
|
|
assert (logits_parallel - logits_ref).abs().max().item() < 2 * hf_error
|
|
assert (logits - logits_ref).abs().max().item() < 2 * hf_error
|
|
assert torch.equal(logits_cg, logits)
|
|
|
|
|
|
# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_llama.py -k "llama_parallel_generation"
|
|
@pytest.mark.parametrize("world_size", [2])
|
|
@pytest.mark.parametrize(
|
|
"model_name", ["13B", "meta-llama/Llama-2-13b-hf", "codellama/CodeLlama-34b-hf"]
|
|
)
|
|
def test_llama_parallel_generation(model_name, world_size):
|
|
"""Check that our implementation matches the HF implementation:
|
|
the scores in fp16 should be around the same as the HF scores in fp16, when compared to
|
|
the HF scores in fp32.
|
|
"""
|
|
from apex.transformer import parallel_state
|
|
|
|
checkpoint_path = (
|
|
Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
|
|
)
|
|
|
|
dtype = torch.float16
|
|
if "/" in model_name: # Download from HF
|
|
config = llama_config_to_gpt2_config(
|
|
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
|
)
|
|
else:
|
|
config = config_from_checkpoint(checkpoint_path, model_name, checkpoint_format="meta")
|
|
config = llama_config_to_gpt2_config(config)
|
|
config.use_flash_attn = True
|
|
config.fused_bias_fc = True
|
|
config.fused_mlp = False # We don't have fused GatedMLP yet
|
|
config.fused_dropout_add_ln = True
|
|
config.residual_in_fp32 = True
|
|
config.pad_vocab_size_multiple = 8 * world_size
|
|
config.sequence_parallel = False # Need to set this to False for generation
|
|
|
|
os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "0"
|
|
if not torch.distributed.is_initialized():
|
|
torch.distributed.init_process_group(backend="nccl", init_method="env://")
|
|
device = f"cuda:{torch.distributed.get_rank()}"
|
|
assert world_size <= torch.distributed.get_world_size()
|
|
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
|
|
rank = parallel_state.get_tensor_model_parallel_rank()
|
|
process_group = parallel_state.get_tensor_model_parallel_group()
|
|
|
|
torch.manual_seed(0)
|
|
batch_size = 1
|
|
seqlen = 100
|
|
max_length = 150
|
|
input_ids = torch.randint(
|
|
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
|
|
)
|
|
|
|
# Need this, otherwise when we capture the graph the process for GPU 1 would run on both
|
|
# GPU0 and GPU1 and things would hang
|
|
torch.cuda.set_device(device)
|
|
|
|
if "/" in model_name: # Download from HF
|
|
pretrained_state_dict = remap_state_dict_hf_llama(
|
|
state_dict_from_pretrained(model_name), config
|
|
)
|
|
else:
|
|
pretrained_state_dict = _pretrained_state_dict_from_checkpoint(
|
|
checkpoint_path, model_name, config, checkpoint_format="meta"
|
|
)
|
|
model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
|
|
model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
|
|
model.eval()
|
|
|
|
print("Without CUDA graph")
|
|
out = model.generate(
|
|
input_ids=input_ids,
|
|
max_length=max_length,
|
|
tensor_parallel=world_size,
|
|
vocab_size=config.vocab_size,
|
|
# teacher_outputs=out_hf.sequences,
|
|
return_dict_in_generate=True,
|
|
output_scores=True,
|
|
enable_timing=True,
|
|
)
|
|
|
|
# Capture graph outside the timing loop
|
|
batch_size, seqlen_og = input_ids.shape
|
|
model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
|
|
print("With CUDA graph")
|
|
out_cg = model.generate(
|
|
input_ids=input_ids,
|
|
max_length=max_length,
|
|
tensor_parallel=world_size,
|
|
vocab_size=config.vocab_size,
|
|
cg=True,
|
|
# teacher_outputs=out_hf.sequences,
|
|
return_dict_in_generate=True,
|
|
output_scores=True,
|
|
enable_timing=True,
|
|
)
|
|
del model
|
|
parallel_state.destroy_model_parallel()
|
|
|
|
if rank == 0:
|
|
# Without device_map, the model is loaded on the CPU, which is very slow
|
|
model_hf = LlamaForCausalLM.from_pretrained(
|
|
model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
|
|
torch_dtype=dtype,
|
|
device_map="auto",
|
|
)
|
|
model_hf.eval()
|
|
print("HF fp16")
|
|
torch.cuda.synchronize()
|
|
start = time.time()
|
|
with torch.inference_mode():
|
|
out_hf = model_hf.generate(
|
|
input_ids=input_ids,
|
|
max_length=max_length,
|
|
return_dict_in_generate=True,
|
|
output_scores=True,
|
|
)
|
|
torch.cuda.synchronize()
|
|
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
|
|
del model_hf
|
|
|
|
model_ref = LlamaForCausalLM.from_pretrained(
|
|
model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
|
|
device_map="auto",
|
|
)
|
|
model_ref.eval()
|
|
with torch.inference_mode():
|
|
logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1]
|
|
del model_ref
|
|
logits_hf = torch.stack(out_hf.scores, dim=1)
|
|
|
|
logits = torch.stack(out.scores, dim=1)
|
|
logits_cg = torch.stack(out_cg.scores, dim=1)
|
|
|
|
hf_error = (logits_hf - logits_ref).abs().max().item()
|
|
print(f"HF fp16 logits max diff: {hf_error}")
|
|
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
|
|
assert (logits - logits_ref).abs().max().item() < 2 * hf_error
|
|
print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item()}")
|
|
assert torch.equal(logits_cg, logits)
|
|
|
|
|
|
@torch.no_grad()
|
|
@pytest.mark.parametrize("world_size", [2])
|
|
def test_llama_parallel_uneven_num_heads(world_size):
|
|
from apex.transformer import parallel_state
|
|
|
|
checkpoint_path = (
|
|
Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
|
|
)
|
|
num_attention_heads = world_size + 1
|
|
model_name = f"teeny-{num_attention_heads}-heads"
|
|
|
|
if not torch.distributed.is_initialized():
|
|
torch.distributed.init_process_group(backend="nccl", init_method="env://")
|
|
device = f"cuda:{torch.distributed.get_rank()}"
|
|
assert world_size <= torch.distributed.get_world_size()
|
|
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
|
|
rank = parallel_state.get_tensor_model_parallel_rank()
|
|
process_group = parallel_state.get_tensor_model_parallel_group()
|
|
|
|
dtype = torch.float16
|
|
llama_config = LlamaConfig(
|
|
hidden_size=256
|
|
* num_attention_heads, # ParallelGatedMlp hidden_features must be divisible by 256
|
|
intermediate_size=256 * num_attention_heads * 4,
|
|
num_hidden_layers=4,
|
|
num_attention_heads=num_attention_heads,
|
|
initializer_range=0.5, # Set crazy init range so we don't have near zero weights implying a vacuous test.
|
|
)
|
|
config = llama_config_to_gpt2_config(llama_config)
|
|
config.use_flash_attn = True
|
|
config.fused_bias_fc = True
|
|
config.fused_mlp = False # We don't have fused GatedMLP yet
|
|
config.fused_dropout_add_ln = True
|
|
config.residual_in_fp32 = True
|
|
|
|
torch.manual_seed(0)
|
|
batch_size = 2
|
|
max_seqlen = 256
|
|
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
|
|
input_ids = torch.randint(
|
|
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
|
|
)
|
|
|
|
# Create a shared test model.
|
|
if rank == 0:
|
|
LlamaForCausalLM(config=llama_config).save_pretrained(checkpoint_path / f"{model_name}-hf")
|
|
torch.distributed.barrier()
|
|
|
|
# Run the standard forward pass test.
|
|
pretrained_state_dict = _pretrained_state_dict_from_checkpoint(
|
|
checkpoint_path, model_name, config, checkpoint_format="hf"
|
|
)
|
|
model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
|
|
model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
|
|
model.eval()
|
|
|
|
# TODO: Avoid duplicate code. Modularize the comparison of two forward pass diffs.
|
|
out = model.transformer(input_ids)
|
|
out, _ = all_gather_raw(out, process_group=process_group)
|
|
out = rearrange(out, "(b s) d -> b s d", b=batch_size)
|
|
logits = model(input_ids).logits
|
|
logits = rearrange(logits, "(b s) d -> b s d", b=batch_size)
|
|
logits, _ = all_gather_raw(logits, process_group)
|
|
logits = rearrange(logits, "(n b) ... d -> b ... (n d)", b=batch_size)
|
|
|
|
if rank == 0:
|
|
model_ref = LlamaForCausalLM.from_pretrained(
|
|
Path(checkpoint_path) / f"{model_name}-hf", device_map={"": device}
|
|
)
|
|
model_ref = model_ref.to(device=device)
|
|
model_ref.eval()
|
|
out_ref = model_ref.model(input_ids).last_hidden_state
|
|
logits_ref = model_ref(input_ids).logits
|
|
del model_ref
|
|
|
|
model_hf = LlamaForCausalLM.from_pretrained(
|
|
Path(checkpoint_path) / f"{model_name}-hf", torch_dtype=dtype, device_map={"": device}
|
|
)
|
|
model_hf.eval()
|
|
out_hf = model_hf.model(input_ids).last_hidden_state.to(device=device)
|
|
logits_hf = model_hf(input_ids).logits.to(device=device)
|
|
del model_hf
|
|
|
|
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
|
|
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
|
|
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
|
|
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
|
|
assert (out - out_ref).abs().max().item() < 2 * (out_hf - out_ref).abs().max().item()
|
|
|
|
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
|
|
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
|
|
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
|
|
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
|
|
assert (logits - logits_ref).abs().max().item() < 2 * (
|
|
logits_hf - logits_ref
|
|
).abs().max().item()
|
|
|
|
if os.path.exists(checkpoint_path / f"{model_name}-hf"):
|
|
shutil.rmtree(checkpoint_path / f"{model_name}-hf")
|