flash-attention/hopper/flash_bwd_launch_template.h
2024-09-19 22:50:59 -07:00

212 lines
13 KiB
C++

/******************************************************************************
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
******************************************************************************/
#pragma once
#include "cute/tensor.hpp"
#include "cutlass/cluster_launch.hpp"
#include "cutlass/device_kernel.h" // For device_kernel
#include "static_switch.h"
#include "flash.h"
#include "flash_bwd_preprocess_kernel.h"
#include "flash_bwd_postprocess_kernel.h"
#include "tile_scheduler_bwd.hpp"
#include "mainloop_bwd_sm90_tma_gmma_ws.hpp"
#include "epilogue_bwd_sm90_tma.hpp"
#include "flash_bwd_kernel.h"
using namespace cute;
template <int kHeadDim, int kBlockM, int kBlockN, typename Element, bool Is_causal, bool Is_local, bool Varlen, bool Deterministic,
bool dKV_swapAB, bool dQ_swapAB, int AtomLayoutMSdP=1, int AtomLayoutNdKV=2, int AtomLayoutMdQ=1>
void run_flash_bwd(Flash_bwd_params &params, cudaStream_t stream) {
static_assert(!(Is_causal && Is_local), "Is_causal and Is_local cannot be true at the same time.");
using TileShape_MK = cute::Shape<Int<kBlockM>, Int<kHeadDim>>;
using ElementAccum = float;
using PreprocessKernel = flash::FlashAttnBwdPreprocess<TileShape_MK, Element, ElementAccum, cutlass::arch::Sm90, /*Clear_dQaccum=*/true, Varlen>;
int const total_q_padded_rounded = cute::round_up(params.total_q + params.b * 128, 128);
typename PreprocessKernel::Arguments preprocess_args {
static_cast<Element const*>(params.o_ptr),
{!Varlen ? params.seqlen_q : params.total_q, params.d, params.h, !Varlen ? params.b : 1}, // shape_O
{params.o_row_stride, _1{}, params.o_head_stride, !Varlen ? params.o_batch_stride : 0}, // stride_O
static_cast<Element const*>(params.do_ptr),
{params.do_row_stride, _1{}, params.do_head_stride, !Varlen ? params.do_batch_stride : 0}, // stride_dO
static_cast<float*>(params.dsoftmax_sum),
{!Varlen ? params.seqlen_q_rounded : total_q_padded_rounded, params.h, !Varlen ? params.b : 1}, // shape_dPsum
{_1{}, !Varlen ? params.seqlen_q_rounded : total_q_padded_rounded, !Varlen ? params.h * params.seqlen_q_rounded : 0}, // stride_dPsum
static_cast<float*>(params.softmax_lse_ptr),
{_1{}, !Varlen ? params.seqlen_q : params.total_q, !Varlen ? params.h * params.seqlen_q : 0}, // stride_LSE
static_cast<float*>(params.softmax_lse_log2_ptr),
{_1{}, !Varlen ? params.seqlen_q_rounded : total_q_padded_rounded, !Varlen ? params.h * params.seqlen_q_rounded : 0}, // stride_LSE_log2
static_cast<ElementAccum*>(params.dq_accum_ptr),
{!Varlen ? params.seqlen_q_rounded : total_q_padded_rounded, params.d_rounded, params.h, !Varlen ? params.b : 1}, // shape_dQaccum
{params.d_rounded, _1{}, params.d_rounded * (!Varlen ? params.seqlen_q_rounded : total_q_padded_rounded), !Varlen ? params.d_rounded * params.seqlen_q_rounded * params.h : 0}, // stride_dQ
params.b,
params.dq_semaphore,
params.cu_seqlens_q,
params.seqused_q
};
typename PreprocessKernel::Params preprocess_params = PreprocessKernel::to_underlying_arguments(preprocess_args);
int num_m_block = cute::ceil_div(params.seqlen_q, kBlockM);
dim3 grid_m(num_m_block, params.h, params.b);
cutlass::device_kernel<PreprocessKernel><<<grid_m, PreprocessKernel::MaxThreadsPerBlock, PreprocessKernel::SharedStorageSize, stream>>>(preprocess_params);
using TileShape_MNK = cute::Shape<Int<kBlockM>, Int<kBlockN>, Int<kHeadDim>>;
using ClusterShape = cute::Shape<_1, Int<1>, _1>;
static constexpr int Stages = 2;
using CollectiveMainloop = flash::CollectiveMainloopBwd<Stages, ClusterShape, TileShape_MNK, Element, ElementAccum, cutlass::arch::Sm90,
Is_causal, Is_local, Varlen, Deterministic,
dKV_swapAB, dQ_swapAB, AtomLayoutMSdP, AtomLayoutNdKV, AtomLayoutMdQ>;
using CollectiveEpilogue = flash::CollectiveEpilogueBwd<TileShape_MNK, Element, CollectiveMainloop::NumMmaThreads, Varlen>;
using Scheduler = flash::SingleTileSchedulerBwd;
using AttnKernel = flash::FlashAttnBwd<CollectiveMainloop, CollectiveEpilogue, Scheduler>;
typename CollectiveMainloop::Arguments mainloop_args {
static_cast<Element const*>(params.q_ptr),
{!Varlen ? params.seqlen_q : params.total_q, params.d, params.h, !Varlen ? params.b : 1}, // shape_Q
{params.q_row_stride, _1{}, params.q_head_stride, !Varlen ? params.q_batch_stride : 0}, // stride_Q
static_cast<Element const*>(params.k_ptr),
{!Varlen ? params.seqlen_k : params.total_k, params.d, params.h_k, !Varlen ? params.b : 1}, // shape_K
{params.k_row_stride, _1{}, params.k_head_stride, !Varlen ? params.k_batch_stride : 0}, // stride_K
static_cast<Element const*>(params.v_ptr),
{params.v_row_stride, _1{}, params.v_head_stride, !Varlen ? params.v_batch_stride : 0}, // stride_V
static_cast<Element const*>(params.do_ptr),
{params.do_row_stride, _1{}, params.do_head_stride, !Varlen ? params.do_batch_stride : 0}, // stride_dO
static_cast<ElementAccum*>(params.dq_accum_ptr),
// {params.seqlen_q_rounded, params.d_rounded, params.h, params.b}, // shape_dQaccum
// {params.d_rounded, _1{}, params.d_rounded * params.seqlen_q_rounded, params.d_rounded * params.seqlen_q_rounded * params.h}, // stride_dQaccum
{(!Varlen ? params.seqlen_q_rounded : total_q_padded_rounded) * (params.d_rounded / 32), 32, params.h, !Varlen ? params.b : 1}, // shape_dQaccum
{32, _1{}, params.d_rounded * (!Varlen ? params.seqlen_q_rounded : total_q_padded_rounded), !Varlen ? params.d_rounded * params.seqlen_q_rounded * params.h : 0}, // stride_dQaccum
static_cast<float*>(params.softmax_lse_log2_ptr),
{!Varlen ? params.seqlen_q_rounded : total_q_padded_rounded, params.h, !Varlen ? params.b : 1}, // shape_LSE
{_1{}, !Varlen ? params.seqlen_q_rounded : total_q_padded_rounded, !Varlen ? params.h * params.seqlen_q_rounded : 0}, // stride_LSE_log2
static_cast<float*>(params.dsoftmax_sum),
{_1{}, !Varlen ? params.seqlen_q_rounded : total_q_padded_rounded, !Varlen ? params.h * params.seqlen_q_rounded : 0}, // stride_dPsum
params.scale_softmax,
params.b,
params.dq_semaphore,
params.cu_seqlens_q, params.cu_seqlens_k,
params.seqused_q, params.seqused_k,
params.window_size_left, params.window_size_right
};
typename CollectiveEpilogue::Arguments epilogue_args {
static_cast<Element*>(params.dk_ptr),
{!Varlen ? params.seqlen_k : params.total_k, params.d, params.h, !Varlen ? params.b : 1}, // shape_dK
{params.dk_row_stride, _1{}, params.dk_head_stride, !Varlen ? params.dk_batch_stride : 0}, // stride_dK
static_cast<Element*>(params.dv_ptr),
{params.dv_row_stride, _1{}, params.dv_head_stride, !Varlen ? params.dv_batch_stride : 0},
params.cu_seqlens_k
};
int num_blocks_n = cutlass::ceil_div(params.seqlen_k, get<1>(TileShape_MNK{}));
num_blocks_n = cutlass::round_up(num_blocks_n, size<1>(ClusterShape{}));
typename Scheduler::Arguments scheduler_args {
num_blocks_n, params.h, params.b, params.tile_count_semaphore, params.cu_seqlens_k
};
int device;
cudaGetDevice(&device);
typename AttnKernel::Params kernel_params = AttnKernel::to_underlying_arguments({
mainloop_args, epilogue_args, {device}, scheduler_args
});
// Get the ptr to kernel function.
void const* kernel = (void const*) cutlass::device_kernel<AttnKernel>;
int smem_size = AttnKernel::SharedStorageSize;
// int smem_size_q = sizeof(decltype((typename AttnKernel::SharedStorage{}).mainloop.smem_q));
// int smem_size_do = sizeof(decltype((typename AttnKernel::SharedStorage{}).mainloop.smem_do));
// int smem_size_ds = sizeof(decltype((typename AttnKernel::SharedStorage{}).mainloop.smem_ds));
// int smem_size_dqacc = sizeof(decltype((typename AttnKernel::SharedStorage{}).mainloop.smem_dqacc));
// int smem_size_k = sizeof(decltype((typename AttnKernel::SharedStorage{}).mainloop.smem_k));
// int smem_size_v = sizeof(decltype((typename AttnKernel::SharedStorage{}).mainloop.smem_v));
// printf("smem_size = %d, q = %d, k = %d, v = %d, do = %d, ds = %d, dqacc = %d\n", smem_size, smem_size_q, smem_size_k, smem_size_v, smem_size_do, smem_size_ds, smem_size_dqacc);
if (smem_size >= 48 * 1024) {
CHECK_CUDA(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
}
dim3 grid_dims = AttnKernel::get_grid_shape(kernel_params);
dim3 block_dims = AttnKernel::get_block_shape();
dim3 cluster_dims(size<0>(ClusterShape{}), size<1>(ClusterShape{}), size<2>(ClusterShape{}));
cutlass::ClusterLaunchParams launch_params{grid_dims, block_dims, cluster_dims, smem_size, stream};
cutlass::launch_kernel_on_cluster(launch_params, kernel, kernel_params);
CHECK_CUDA_KERNEL_LAUNCH();
using PostprocessKernel = flash::FlashAttnBwdPostprocessConvertdQ<TileShape_MK, Element, ElementAccum, cutlass::arch::Sm90,
AttnKernel::CollectiveMainloop::kNThreadsdQ,
typename AttnKernel::CollectiveMainloop::SmemLayoutdQaccumTMA,
typename AttnKernel::CollectiveMainloop::TiledMmadQ,
AttnKernel::CollectiveMainloop::dQ_swapAB
>;
typename PostprocessKernel::Arguments postprocess_args {
static_cast<ElementAccum const*>(params.dq_accum_ptr),
// {params.seqlen_q_rounded, params.d_rounded, params.h, params.b}, // shape_dQaccum
// {params.d_rounded, _1{}, params.d_rounded * params.seqlen_q_rounded, params.d_rounded * params.seqlen_q_rounded * params.h}, // stride_dQaccum
{(!Varlen ? params.seqlen_q_rounded : total_q_padded_rounded) * (params.d_rounded / 32), 32, params.h, !Varlen ? params.b : 1}, // shape_dQaccum
{32, _1{}, params.d_rounded * (!Varlen ? params.seqlen_q_rounded : total_q_padded_rounded), !Varlen ? params.d_rounded * params.seqlen_q_rounded * params.h : 0}, // stride_dQaccum
static_cast<Element*>(params.dq_ptr),
{!Varlen ? params.seqlen_q : params.total_q, params.d, params.h, !Varlen ? params.b : 1}, // shape_dQ
{params.dq_row_stride, _1{}, params.dq_head_stride, params.dq_batch_stride}, // stride_dQ
params.scale_softmax,
params.cu_seqlens_q,
params.seqused_q
};
typename PostprocessKernel::Params postprocess_params = PostprocessKernel::to_underlying_arguments(postprocess_args);
int num_m_block_postprocess = cute::ceil_div(params.seqlen_q, get<0>(TileShape_MK{}));
dim3 grid_m_postprocess(num_m_block_postprocess, params.h, params.b);
// Get the ptr to kernel function.
auto postprocess_kernel = cutlass::device_kernel<PostprocessKernel>;
int smem_size_postprocess = PostprocessKernel::SharedStorageSize;
if (smem_size_postprocess >= 48 * 1024) {
CHECK_CUDA(cudaFuncSetAttribute(postprocess_kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
}
postprocess_kernel<<<grid_m_postprocess, PostprocessKernel::MaxThreadsPerBlock, smem_size_postprocess, stream>>>(postprocess_params);
CHECK_CUDA_KERNEL_LAUNCH();
}
template<typename T>
void run_mha_bwd_hdim64(Flash_bwd_params &params, cudaStream_t stream) {
constexpr static int Headdim = 64;
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
BOOL_SWITCH(params.is_local, Is_local, [&] {
BOOL_SWITCH(params.cu_seqlens_q != nullptr || params.cu_seqlens_k != nullptr, Varlen, [&] {
BOOL_SWITCH(params.deterministic, Deterministic, [&] {
run_flash_bwd<Headdim, 128, 128, T, Is_causal, Is_local && !Is_causal, Varlen, Deterministic, false, false, 1, 2, 2>(params, stream);
});
});
});
});
}
template<typename T>
void run_mha_bwd_hdim96(Flash_bwd_params &params, cudaStream_t stream) {
constexpr static int Headdim = 96;
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
BOOL_SWITCH(params.is_local, Is_local, [&] {
BOOL_SWITCH(params.cu_seqlens_q != nullptr || params.cu_seqlens_k != nullptr, Varlen, [&] {
BOOL_SWITCH(params.deterministic, Deterministic, [&] {
run_flash_bwd<Headdim, 64, 128, T, Is_causal, Is_local && !Is_causal, Varlen, Deterministic, false, false, 1, 2, 1>(params, stream);
});
});
});
});
}
template<typename T>
void run_mha_bwd_hdim128(Flash_bwd_params &params, cudaStream_t stream) {
constexpr static int Headdim = 128;
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
BOOL_SWITCH(params.is_local, Is_local, [&] {
BOOL_SWITCH(params.cu_seqlens_q != nullptr || params.cu_seqlens_k != nullptr, Varlen, [&] {
BOOL_SWITCH(params.deterministic, Deterministic, [&] {
run_flash_bwd<Headdim, 64, 128, T, Is_causal, Is_local && !Is_causal, Varlen, Deterministic, false, false, 1, 2, 1>(params, stream);
});
});
});
});
}