flash-attention/hopper/seq_len.h
2024-11-09 17:05:01 -08:00

452 lines
17 KiB
C++

/******************************************************************************
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
******************************************************************************/
#pragma once
#include <array>
#include <algorithm>
#include <cutlass/cutlass.h>
#include <cute/layout.hpp>
namespace flash {
static constexpr int kMaxTileSize = 128;
template <bool UseVarSeqLen_, bool UsePagedKV_, bool UseGQAPacking_> class SeqLenTraits {
public:
static_assert((!UsePagedKV_) || (UseVarSeqLen_ && UsePagedKV_), "PagedKV is only supported for VarSeqLen.");
static_assert(!(UseVarSeqLen_ && UseGQAPacking_),
"Variable sequence length with GQA parallelization not implemented yet.");
// Total number of queries / keys. Unpadded.
int sum_s = 0;
// seq len offsets.
int *cu_seq_len = nullptr;
// actual seq len array.
int *seq_used = nullptr;
// seq len of the current batch.
int actual_seq_len = -1;
// Whether this is for fixed-seq-len or var-seq-len.
static constexpr bool UseVarSeqLen = UseVarSeqLen_;
static constexpr bool UseGQAPacking = UseGQAPacking_;
static constexpr bool UsePagedKV = UsePagedKV_;
using ShapeT = std::conditional_t<
UseVarSeqLen,
std::conditional_t<
!UsePagedKV,
cute::Shape<int32_t, int32_t, int32_t>,
cute::Shape<int32_t, int32_t, int32_t, int32_t>>,
std::conditional_t<
UseGQAPacking,
cute::Shape<int32_t, int32_t, int32_t, int32_t, int32_t>,
cute::Shape<int32_t, int32_t, int32_t, int32_t>
>
>;
using VirtualShapeT = std::conditional_t<
UsePagedKV,
cute::Shape<int32_t, int32_t, int32_t, int32_t>,
ShapeT
>;
using StrideT = std::conditional_t<
UseVarSeqLen,
std::conditional_t<
!UsePagedKV,
cute::Shape<int64_t, _1, int64_t>,
cute::Shape<int64_t, _1, int64_t, int64_t>>,
std::conditional_t<
UseGQAPacking,
cute::Shape<int64_t, int64_t, _1, int64_t, int64_t>,
cute::Shape<int64_t, _1, int64_t, int64_t>
>
>;
using LayoutT = cute::Layout<ShapeT, StrideT>;
using ShapeLseT = std::conditional_t<
UseVarSeqLen,
cute::Shape<int32_t, int32_t>,
cute::Shape<int32_t, int32_t, int32_t>
>;
using StrideLseT = std::conditional_t<
UseVarSeqLen,
cute::Shape<int64_t, _1>,
cute::Shape<int64_t, int64_t, _1>
>;
using LayoutLseT = cute::Layout<ShapeLseT, StrideLseT>;
// Not used for varseqlen
using ShapeOAccumT = std::conditional_t<
UseGQAPacking,
cute::Shape<int32_t, int32_t, int32_t, int32_t, int32_t, int32_t>,
cute::Shape<int32_t, int32_t, int32_t, int32_t, int32_t>
>;
using StrideOAccumT = std::conditional_t<
UseGQAPacking,
cute::Shape<int64_t, int64_t, _1, int64_t, int64_t, int64_t>,
cute::Shape<int64_t, _1, int64_t, int64_t, int64_t>
>;
using LayoutOAccumT = cute::Layout<ShapeOAccumT, StrideOAccumT>;
using ShapeLseAccumT = cute::Shape<int32_t, int32_t, int32_t, int32_t>;
using StrideLseAccumT = cute::Shape<int64_t, int64_t, int64_t, _1>;
using LayoutLseAccumT = cute::Layout<ShapeLseAccumT, StrideLseAccumT>;
CUTLASS_HOST SeqLenTraits() {}
CUTLASS_HOST SeqLenTraits(
int sum_s, int max_seq_len, int *cu_seq_len = nullptr, int *seq_used = nullptr):
sum_s(sum_s), cu_seq_len(cu_seq_len), seq_used(seq_used), actual_seq_len(max_seq_len) {}
CUTLASS_DEVICE void init(int bidb) {
// TODO: add leftpad, seqlen_new for kv cache support
if (seq_used) {
actual_seq_len = seq_used[bidb];
}
}
CUTLASS_DEVICE void init_no_guard(int bidb) {
actual_seq_len = seq_used[bidb];
}
// Returns the layout of a tensor in MKHB format in global memory.
// padded: only useful for var-seq-len for dq_accum and softmax_d.
CUTLASS_HOST_DEVICE auto get_gmem_layout(
int m, int k, int h, int b,
int64_t m_stride, int64_t h_stride, int64_t b_stride,
int page_block_size, int num_blocks,
bool padded = false) const {
static_assert(!UseVarSeqLen, "Specialize default implementation for VarSeqLen.");
// static_assert(!UseGQAPacking, "Specialize default implementation for UseGQAPacking.");
return make_layout(make_shape(m, k, h, b),
make_stride(m_stride, cute::_1{}, h_stride, b_stride));
}
// Returns the layout of a tensor in MKHB format in virtual memory space
// that is mapped to the global memory via the block table when paged attention is used
CUTLASS_HOST_DEVICE VirtualShapeT get_virtual_shape(
int m, int k, int h_k, int b, int h_h_k_ratio, bool padded) const {
return make_shape(m, k, h_k, b);
}
// Returns the layout of a tensor in MKHB format in global memory.
// padded: only useful for var-seq-len for dq_accum and softmax_d.
// Overload that separates h into h_k and h/h_k.
CUTLASS_HOST_DEVICE auto get_gmem_layout(
int m, int k, int h_k, int b, int h_h_k_ratio,
int64_t m_stride, int64_t h_stride, int64_t b_stride,
bool padded = false) const {
static_assert(!UseVarSeqLen, "Specialize default implementation for VarSeqLen.");
static_assert(!UseGQAPacking, "Specialize default implementation for UseGQAPacking.");
return make_layout(make_shape(m, k, h_k * h_h_k_ratio, b),
make_stride(m_stride, cute::_1{}, h_stride, b_stride));
}
// Returns the layout of a tensor in MKHBT format in global memory,
// where T is number of splits.
CUTLASS_HOST_DEVICE auto get_oaccum_gmem_layout(
int m, int k, int h, int b, int num_splits,
int64_t m_stride, int64_t h_stride, int64_t b_stride, int64_t split_stride,
bool padded = false) const {
return make_layout(make_shape(m, k, h, b, num_splits),
make_stride(m_stride, cute::_1{}, h_stride, b_stride, split_stride));
}
// Returns the layout of a tensor in MKHBT format in global memory,
// where T is number of splits.
// Overload that separates h into h_k and h/h_k.
CUTLASS_HOST_DEVICE auto get_oaccum_gmem_layout(
int m, int k, int h_k, int b, int h_h_k_ratio, int num_splits,
int64_t m_stride, int64_t h_stride, int64_t b_stride, int64_t split_stride,
bool padded = false) const {
return make_layout(make_shape(m, k, h_k * h_h_k_ratio, b, num_splits),
make_stride(m_stride, cute::_1{}, h_stride, b_stride, split_stride));
}
// Returns the layout of lse tensor in BHM format in global memory.
// padded: only useful for var-seq-len for dq_accum and softmax_d.
CUTLASS_HOST_DEVICE auto get_lse_gmem_layout(
int m, int h, int b, bool padded = false) const {
static_assert(!UseVarSeqLen, "Specialize default implementation for VarSeqLen.");
return make_layout(make_shape(b, h, m),
make_stride(int64_t(h * m), int64_t(m), cute::_1()));
}
// Returns the layout of lse tensor in TBHM format in global memory,
// where T is number of splits.
CUTLASS_HOST_DEVICE auto get_lseaccum_gmem_layout(
int m, int h, int b, int num_splits, bool padded = false) const {
return make_layout(make_shape(num_splits, b, h, m),
make_stride(int64_t(b * h * m), int64_t(h * m), int64_t(m), cute::_1()));
}
template <typename MTensor, typename Shape>
CUTLASS_DEVICE auto get_local_tile_tensor(
const MTensor &m_tensor, const Shape &tile_shape,
int bidh, int bidb, bool padded = false) const {
auto g_tensor = local_tile(
m_tensor(_, _, bidh, bidb), tile_shape, make_coord(_, _0{}));
return g_tensor;
}
template <bool Is_split, typename MTensor, typename Shape>
CUTLASS_DEVICE auto get_lse_local_tile_tensor(
const MTensor &m_tensor, const Shape &tile_shape,
int bidh, int bidb, int n_split_idx, bool padded = false) const {
// m_tensor has shape (B, H, M) or (splits, B, H, M)
// Expect tile shape (bM)
// Returns g_tensor of shape = (bM, ceil_div(M,bM))
if constexpr(!Is_split) {
auto g_tensor = local_tile(m_tensor(bidb, bidh, _), tile_shape, make_coord(_));
return g_tensor;
} else {
auto g_tensor = local_tile(m_tensor(n_split_idx, bidb, bidh, _), tile_shape, make_coord(_));
return g_tensor;
}
}
template <bool Is_split, typename MTensor, typename Shape>
CUTLASS_DEVICE auto get_o_local_tile_tensor(
const MTensor &m_tensor, const Shape &tile_shape,
int bidh, int bidb, int split_idx, bool padded = false) const {
// static_assert(!UseVarSeqLen, "Don't use get_o_local_tile_tensor with VarSeqLen.");
// m_tensor has shape (M, K, H, B) or (M, K, H, B, splits)
// Expect tile shape (bM, K)
// Returns g_tensor of shape = (bM, K, ceil_div(M,bM))
if constexpr(!Is_split) {
auto g_tensor = local_tile(
m_tensor(_, _, bidh, bidb), tile_shape, make_coord(_, _0{}));
return g_tensor;
} else {
auto g_tensor = local_tile(
m_tensor(_, _, bidh, bidb, split_idx), tile_shape, make_coord(_, _0{}));
return g_tensor;
}
}
};
using FixedSeqLenTraits = SeqLenTraits<false, false, false>;
using VarSeqLenTraits = SeqLenTraits<true, false, false>;
using PagedSeqLenTraits = SeqLenTraits<true, true, false>;
using FixedGQASeqLenTraits = SeqLenTraits<false, false, true>;
template <>
CUTLASS_DEVICE void VarSeqLenTraits::init(int bidb) {
actual_seq_len =
seq_used ? seq_used[bidb] : (cu_seq_len[bidb + 1] - cu_seq_len[bidb]);
}
template <>
CUTLASS_DEVICE void FixedGQASeqLenTraits::init(int bidb) {
// no op
}
// Returns the static layout of a var-seq-len tensor in global memory based on
// max_seq_len and max_batch_size.
// padded: only useful for var-seq-len for dq_accum and softmax_d.
// When padded is True, use B_M + kMaxTileSize * B as the total B_M.
template <>
CUTLASS_HOST_DEVICE auto VarSeqLenTraits::get_gmem_layout(
int m, int k, int h, int b,
int64_t m_stride, int64_t h_stride, int64_t b_stride,
int page_block_size, int num_blocks,
bool padded) const {
return make_layout(
make_shape(sum_s + (padded ? kMaxTileSize * b : 0), k, h),
make_stride(m_stride, cute::_1{}, h_stride));
}
template <>
CUTLASS_HOST_DEVICE auto VarSeqLenTraits::get_gmem_layout(
int m, int k, int h_k, int b, int h_h_k_ratio,
int64_t m_stride, int64_t h_stride, int64_t b_stride,
bool padded) const {
return make_layout(
make_shape(sum_s + (padded ? kMaxTileSize * b : 0), k, h_k * h_h_k_ratio),
make_stride(m_stride, cute::_1{}, h_stride));
}
template <>
CUTLASS_HOST_DEVICE VarSeqLenTraits::VirtualShapeT VarSeqLenTraits::get_virtual_shape(
int m, int k, int h, int b, int h_h_k_ratio,
bool padded) const {
return make_shape(sum_s + (padded ? kMaxTileSize * b : 0), k, h);
}
// padded: only useful for var-seq-len for dq_accum and softmax_d.
// When padded is True, use B_M + kMaxTileSize * B as the total B_M.
//template <>
template <>
CUTLASS_HOST_DEVICE auto VarSeqLenTraits::get_lse_gmem_layout(
int m, int h, int b, bool padded) const {
return make_layout(
make_shape(h, sum_s + (padded ? kMaxTileSize * b : 0)),
make_stride(int64_t(sum_s + (padded ? kMaxTileSize * b : 0)), cute::_1()));
}
template <>
template <typename MTensor, typename Shape>
CUTLASS_DEVICE auto VarSeqLenTraits::get_local_tile_tensor(
const MTensor &m_tensor, const Shape &tile_shape,
int bidh, int bidb, bool padded) const {
auto g_offset = local_tile(
m_tensor(_, _, bidh),
cute::make_shape(1, get<1>(tile_shape)),
make_coord(cu_seq_len[bidb] + (padded ? kMaxTileSize * bidb : 0), _0{}));
auto g_sequence = make_tensor(
g_offset.data(),
make_layout(
cute::make_shape(actual_seq_len, get<1>(tile_shape)),
g_offset.stride()
));
auto g_tensor = local_tile(g_sequence, tile_shape, make_coord(_, _0{}));
return g_tensor;
}
// TODO: restructure to not duplicate code
template <>
template <bool Is_split, typename MTensor, typename Shape>
CUTLASS_DEVICE auto VarSeqLenTraits::get_o_local_tile_tensor(
const MTensor &m_tensor, const Shape &tile_shape,
int bidh, int bidb, int n_split_idx, bool padded) const {
static_assert(!Is_split, "Don't currently support split kv kernel with VarSeqLenTraits");
auto g_offset = local_tile(
m_tensor(_, _, bidh),
cute::make_shape(1, get<1>(tile_shape)),
make_coord(cu_seq_len[bidb] + (padded ? kMaxTileSize * bidb : 0), _0{}));
auto g_sequence = make_tensor(
g_offset.data(),
make_layout(
cute::make_shape(actual_seq_len, get<1>(tile_shape)),
g_offset.stride()
));
auto g_tensor = local_tile(g_sequence, tile_shape, make_coord(_, _0{}));
return g_tensor;
}
template <>
template <bool Is_split, typename MTensor, typename Shape>
CUTLASS_DEVICE auto VarSeqLenTraits::get_lse_local_tile_tensor(
const MTensor &m_tensor, const Shape &tile_shape,
int bidh, int bidb, int n_split_idx, bool padded) const {
static_assert(!Is_split, "Don't currently support split kv kernel with VarSeqLenTraits");
auto g_offset = local_tile(
m_tensor(bidh, _), cute::make_shape(_1{}),
make_coord(cu_seq_len[bidb] + (padded ? kMaxTileSize * bidb : 0)));
auto g_sequence = make_tensor(
g_offset.data(),
make_layout(cute::make_shape(actual_seq_len), cute::make_shape(_1{})));
auto g_tensor = local_tile(g_sequence, tile_shape, make_coord(_));
return g_tensor;
}
// Returns layout of QO tensor in (M,H/HK,K,HK,B) format in global memory.
template <>
CUTLASS_HOST_DEVICE auto FixedGQASeqLenTraits::get_gmem_layout(
int m, int k, int h_k, int b, int h_h_k_ratio,
int64_t m_stride, int64_t h_stride, int64_t b_stride, bool padded) const {
return make_layout(make_shape(m, h_h_k_ratio, k, h_k, b),
make_stride(m_stride, h_stride, cute::_1{},
h_stride * h_h_k_ratio, b_stride));
}
template <>
CUTLASS_HOST_DEVICE FixedGQASeqLenTraits::VirtualShapeT FixedGQASeqLenTraits::get_virtual_shape(
int m, int k, int h_k, int b, int h_h_k_ratio,
bool padded) const {
return make_shape(m, h_h_k_ratio, k, h_k, b);
}
// Returns layout of Oaccum tensor in (M,H/HK,K,HK,B,T) format in global memory.
template <>
CUTLASS_HOST_DEVICE auto FixedGQASeqLenTraits::get_oaccum_gmem_layout(
int m, int k, int h_k, int b, int h_h_k_ratio, int num_splits,
int64_t m_stride, int64_t h_stride, int64_t b_stride, int64_t split_stride,
bool padded) const {
return make_layout(make_shape(m, h_h_k_ratio, k, h_k, b, num_splits),
make_stride(m_stride, h_stride, cute::_1{},
h_stride * h_h_k_ratio, b_stride,
split_stride));
}
template <>
template <typename MTensor, typename Shape>
CUTLASS_DEVICE auto FixedGQASeqLenTraits::get_local_tile_tensor(
const MTensor &m_tensor, const Shape &tile_shape,
int bidh_kv, int bidb, bool padded) const {
// m_tensor has shape (M, H/H_K, K, H_K, B)
// Expect tile_shape (bM/bH, bH, K)
// Returns g_tensor of shape (bM/bH, bH, K, ceil_div(M,bM/bH), ceil_div(H/H_K,bH))
auto g_tensor = local_tile(
m_tensor(_, _, _, bidh_kv, bidb), tile_shape, make_coord(_, _, _0{}));
return g_tensor;
}
template <>
template <bool Is_split, typename MTensor, typename Shape>
CUTLASS_DEVICE auto FixedGQASeqLenTraits::get_o_local_tile_tensor(
const MTensor &m_tensor, const Shape &tile_shape,
int bidh_kv, int bidb, int split_idx, bool padded) const {
// m_tensor has shape (M, H/H_K, K, H_K, B) or (M, H/H_K, K, H_K, B, splits)
// Expect tile_shape (bM/bH, bH, K)
// Returns g_tensor of shape (bM/bH, bH, K, ceil_div(M,bM/bH), ceil_div(H/H_K,bH))
if constexpr(!Is_split) {
auto g_tensor = local_tile(
m_tensor(_, _, _, bidh_kv, bidb), tile_shape, make_coord(_, _, _0{}));
return g_tensor;
} else {
auto g_tensor = local_tile(
m_tensor(_, _, _, bidh_kv, bidb, split_idx), tile_shape, make_coord(_, _, _0{}));
return g_tensor;
}
}
/////////////// PagedSeqLenTraits /////////////////
// Returns the layout of a tensor in MKHB format in global memory.
// padded: only useful for var-seq-len for dq_accum and softmax_d.
template<>
CUTLASS_HOST_DEVICE auto PagedSeqLenTraits::get_gmem_layout(
int m, int k, int h, int b,
int64_t m_stride, int64_t h_stride, int64_t b_stride,
int page_block_size, int num_blocks,
bool padded) const {
return static_cast<PagedSeqLenTraits::LayoutT>(make_layout(make_shape((int)page_block_size, k, h, (int)num_blocks),
make_stride(m_stride, cute::_1{}, h_stride, b_stride)));
}
template <>
CUTLASS_DEVICE void PagedSeqLenTraits::init(int bidb) {
actual_seq_len =
seq_used ? seq_used[bidb] : (cu_seq_len[bidb + 1] - cu_seq_len[bidb]);
}
template <>
template <typename MTensor, typename Shape>
CUTLASS_DEVICE auto PagedSeqLenTraits::get_local_tile_tensor(
const MTensor &m_tensor, const Shape &tile_shape,
int bidh, int bidb, bool padded) const {
auto g_slice = m_tensor(_, _, bidh, bidb); // = m_tensor[:,:, head_idx, batch_idx]
auto g_seq_slice = make_tensor( // m_tensor[:actual_seq_len,:, head_idx, batch_idx]
g_slice.data(),
make_layout(cute::make_shape(actual_seq_len, get<1>(g_slice.layout().shape())), g_slice.layout().stride()));
// slice up into tiles
auto g_tensor = local_tile(
g_seq_slice, tile_shape, make_coord(_, _0{}));
return g_tensor;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace flash