flash-attention/tests/test_flash_attn.py
2023-08-13 13:53:17 -07:00

927 lines
49 KiB
Python

import math
import torch
import torch.nn.functional as F
import pytest
from einops import rearrange, repeat
from flash_attn import flash_attn_func, flash_attn_kvpacked_func, flash_attn_qkvpacked_func
from flash_attn import flash_attn_varlen_qkvpacked_func, flash_attn_varlen_kvpacked_func
from flash_attn import flash_attn_varlen_func
from flash_attn.flash_attn_interface import _get_block_size
from flash_attn.bert_padding import unpad_input, pad_input, index_first_axis
MAX_HEADDIM_SM8x = 192
is_sm75 = torch.cuda.get_device_capability('cuda') == (7, 5)
is_sm8x = torch.cuda.get_device_capability('cuda')[0] == 8
is_sm80 = torch.cuda.get_device_capability('cuda') == (8, 0)
is_sm90 = torch.cuda.get_device_capability('cuda') == (9, 0)
def generate_random_padding_mask(max_seqlen, batch_size, device, mode='random'):
assert mode in ['full', 'random', 'third']
if mode == 'full':
lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32)
elif mode == 'random':
lengths = torch.randint(max(1, max_seqlen - 20), max_seqlen, (batch_size, 1), device=device)
elif mode == 'third':
lengths = torch.randint(max_seqlen // 3, max_seqlen, (batch_size, 1), device=device)
padding_mask = repeat(torch.arange(max_seqlen, device=device), 's -> b s', b=batch_size) < lengths
return padding_mask
def generate_qkv(q, k, v, query_padding_mask=None, key_padding_mask=None,
kvpacked=False, qkvpacked=False):
"""
Arguments:
q: (batch_size, seqlen_q, nheads, d)
k: (batch_size, seqlen_k, nheads_k, d)
v: (batch_size, seqlen_k, nheads_k, d)
query_padding_mask: (batch_size, seqlen), bool
key_padding_mask: (batch_size, seqlen), bool
"""
assert not (kvpacked and qkvpacked)
batch_size, seqlen_q, nheads, d = q.shape
_, seqlen_k, nheads_k, _ = k.shape
assert k.shape == (batch_size, seqlen_k, nheads_k, d)
assert v.shape == (batch_size, seqlen_k, nheads_k, d)
if query_padding_mask is not None:
q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, query_padding_mask)
output_pad_fn = lambda output_unpad: pad_input(output_unpad, indices_q, batch_size, seqlen_q)
else:
q_unpad = rearrange(q, 'b s h d -> (b s) h d')
cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
device=q_unpad.device)
max_seqlen_q = seqlen_q
output_pad_fn = lambda output_unpad: rearrange(output_unpad, '(b s) h d -> b s h d', b=batch_size)
if key_padding_mask is not None:
k_unpad, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask)
v_unpad, _, _, _ = unpad_input(v, key_padding_mask)
else:
k_unpad = rearrange(k, 'b s h d -> (b s) h d')
v_unpad = rearrange(v, 'b s h d -> (b s) h d')
cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32,
device=k_unpad.device)
max_seqlen_k = seqlen_k
if qkvpacked:
assert (query_padding_mask == key_padding_mask).all()
assert nheads == nheads_k
qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
qkv = torch.stack([q, k, v], dim=2)
if query_padding_mask is not None:
dqkv_pad_fn = lambda dqkv_unpad: pad_input(dqkv_unpad, indices_q, batch_size, seqlen_q)
else:
dqkv_pad_fn = lambda dqkv_unpad: rearrange(dqkv_unpad, '(b s) t h d -> b s t h d', b=batch_size)
return (qkv_unpad.detach().requires_grad_(), cu_seqlens_q, max_seqlen_q,
qkv.detach().requires_grad_(), output_pad_fn, dqkv_pad_fn)
elif kvpacked:
kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
kv = torch.stack([k, v], dim=2)
dq_pad_fn = output_pad_fn
if key_padding_mask is not None:
dkv_pad_fn = lambda dkv_unpad: pad_input(dkv_unpad, indices_k, batch_size, seqlen_k)
else:
dkv_pad_fn = lambda dkv_unpad: rearrange(dkv_unpad, '(b s) t h d -> b s t h d', b=batch_size)
return (q_unpad.detach().requires_grad_(), kv_unpad.detach().requires_grad_(),
cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
q.detach().requires_grad_(), kv.detach().requires_grad_(),
output_pad_fn, dq_pad_fn, dkv_pad_fn)
else:
dq_pad_fn = output_pad_fn
if key_padding_mask is not None:
dk_pad_fn = lambda dk_unpad: pad_input(dk_unpad, indices_k, batch_size, seqlen_k)
else:
dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, '(b s) h d -> b s h d', b=batch_size)
return (q_unpad.detach().requires_grad_(), k_unpad.detach().requires_grad_(),
v_unpad.detach().requires_grad_(),
cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
q.detach().requires_grad_(), k.detach().requires_grad_(),
v.detach().requires_grad_(),
output_pad_fn, dq_pad_fn, dk_pad_fn)
def attention_ref(q, k, v, query_padding_mask=None, key_padding_mask=None, dropout_p=0.0,
dropout_mask=None, causal=False, upcast=True, reorder_ops=False):
"""
Arguments:
q: (batch_size, seqlen_q, nheads, head_dim)
k: (batch_size, seqlen_k, nheads_k, head_dim)
v: (batch_size, seqlen_k, nheads_k, head_dim)
query_padding_mask: (batch_size, seqlen_q)
key_padding_mask: (batch_size, seqlen_k)
dropout_p: float
dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
output back to fp16/bf16.
reorder_ops: whether to change the order of operations (scaling k instead of scaling k, etc.)
without changing the math. This is to estimate the numerical error from operation
reordering.
Output:
output: (batch_size, seqlen_q, nheads, head_dim)
attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
"""
dtype_og = q.dtype
if upcast:
q, k, v = q.float(), k.float(), v.float()
seqlen_q, seqlen_k = q.shape[1], k.shape[1]
k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
d = q.shape[-1]
if not reorder_ops:
scores = torch.einsum('bthd,bshd->bhts', q / math.sqrt(d), k)
else:
scores = torch.einsum('bthd,bshd->bhts', q, k / math.sqrt(d))
if key_padding_mask is not None:
scores.masked_fill_(rearrange(~key_padding_mask, 'b s -> b 1 1 s'), float('-inf'))
if causal:
causal_mask = torch.triu(torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=q.device), 1)
scores.masked_fill_(causal_mask, float('-inf'))
attention = torch.softmax(scores, dim=-1)
dropout_scaling = 1.0 / (1 - dropout_p)
# attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
# output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
if dropout_mask is not None:
attention_drop = attention.masked_fill(~dropout_mask, 0.0)
else:
attention_drop = attention
output = torch.einsum('bhts,bshd->bthd', attention_drop, v * dropout_scaling)
if query_padding_mask is not None:
output.masked_fill_(rearrange(~query_padding_mask, 'b s -> b s 1 1'), 0.0)
attention = attention.masked_fill(rearrange(~query_padding_mask, 'b s -> b 1 s 1'), 0.0)
return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)
def attention_kvpacked_ref(q, kv, query_padding_mask=None, key_padding_mask=None, dropout_p=0.0,
dropout_mask=None, causal=False, upcast=True, reorder_ops=False):
return attention_ref(q, kv[:, :, 0], kv[:, :, 1], query_padding_mask,
key_padding_mask, dropout_p, dropout_mask, upcast=upcast, causal=causal,
reorder_ops=reorder_ops)
def attention_qkvpacked_ref(qkv, key_padding_mask=None, dropout_p=0.0,
dropout_mask=None, causal=False, upcast=True, reorder_ops=False):
return attention_ref(qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], key_padding_mask,
key_padding_mask, dropout_p, dropout_mask, upcast=upcast, causal=causal,
reorder_ops=reorder_ops)
def generate_sparsity_mask(seqlen, sparsity=0.3):
repeats = seqlen // 16 // 2
# mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda'),
# torch.tensor([0, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
# mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda'),
# torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
# mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
# mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
nrow, ncol = seqlen // 16, seqlen // 256
mask = torch.rand(nrow, ncol, device='cuda') < sparsity
return mask
def attention_blocksparse_ref(qkv, blockmask, attn_mask, dropout_p, dropout_mask):
"""
Arguments:
qkv: (batch_size, seqlen, 3, nheads, head_dim)
blockmask: (seqlen / 16, seqlen / 256)
attn_mask: (batch_size, seqlen)
dropout_p: float
dropout_mask: (batch_size, nheads, seqlen, seqlen)
Output:
output: (batch_size, seqlen, nheads, head_dim)
attention: softmax after dropout
"""
q, k, v = qkv.float().unbind(dim=2)
d = qkv.shape[-1]
seqlen = qkv.shape[1]
scores = torch.einsum('bthd,bshd->bhts', q / math.sqrt(d), k)
scores.masked_fill_(rearrange(~attn_mask, 'b s -> b 1 1 s'), float('-inf'))
blockmask = repeat(blockmask, 's_16 s_256 -> (s_16 16) (s_256 256)')
blockmask = blockmask[:seqlen, :seqlen]
scores.masked_fill_(rearrange(~blockmask, 't s -> 1 1 t s'), float('-inf'))
attention = torch.softmax(scores, dim=-1)
attention = attention.masked_fill(rearrange(~attn_mask, 'b s -> b 1 s 1'), 0.0)
attention = attention.masked_fill_(rearrange(~blockmask, 't s -> 1 1 t s'), 0.0)
attention_drop = attention.masked_fill(~dropout_mask, 0.0) / (1 - dropout_p)
output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
output.masked_fill_(rearrange(~attn_mask, 'b s -> b s 1 1'), 0)
return output.to(dtype=qkv.dtype), attention.to(dtype=qkv.dtype)
def convert_flash_attn_S_to_softmax(S, query_padding_mask, key_padding_mask, head_dim, is_dropout,
causal=False):
"""FlashAttention stores the S matrix in a different way.
Arguments:
S: (batch_size, nheads, seqlen_q_rounded, seqlen_k_rounded)
query_padding_mask: (batch_size, seqlen_q)
key_padding_mask: (batch_size, seqlen_k)
"""
seqlen_q, seqlen_k = S.shape[-2:]
warps_n = 4
blocksize_m, blocksize_n = _get_block_size(S.device, head_dim, is_dropout, causal)
nblocks_n = (seqlen_k + blocksize_n - 1) // blocksize_n
nblocks_m = (seqlen_q + blocksize_m - 1) // blocksize_m
mmas_n = (blocksize_n + 16 - 1) // 16
S_flat = rearrange(S, 'b h (nblocks_m blocksize_m) (nblocks_n blocksize_n) -> b h nblocks_m nblocks_n (blocksize_m blocksize_n)',
blocksize_m=blocksize_m, blocksize_n=blocksize_n)
S_converted = rearrange(S_flat, 'b h nblocks_m nblocks_n (mmas_n mmas_m warps_n eight four c2 c1 c0) -> b h (nblocks_m mmas_m warps_n c1 eight) (nblocks_n mmas_n c2 four c0)',
mmas_n=mmas_n, warps_n=warps_n, eight=8, c0=2, c1=2, c2=2, four=4)
if causal:
causal_mask = torch.triu(torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=S.device), 1)
S_converted.masked_fill_(causal_mask, 0.0)
# Need to zero out things not in attention_mask in case S was initialized with random values
# and some of those values aren't overwritten.
seqlen_q_og = query_padding_mask.shape[-1] if query_padding_mask is not None else seqlen_q
if query_padding_mask is not None:
if seqlen_q_og < seqlen_q:
query_padding_mask = F.pad(query_padding_mask, (0, seqlen_q - seqlen_q_og))
else:
query_padding_mask = query_padding_mask[:, :seqlen_q]
S_converted = S_converted.masked_fill(rearrange(~query_padding_mask, 'b s -> b 1 s 1'), 0.0)
seqlen_k_og = key_padding_mask.shape[-1] if key_padding_mask is not None else seqlen_k
if key_padding_mask is not None:
if seqlen_k_og < seqlen_k:
key_padding_mask = F.pad(key_padding_mask, (0, seqlen_k - seqlen_k_og))
else:
key_padding_mask = key_padding_mask[:, :seqlen_k]
S_converted = S_converted.masked_fill(rearrange(~key_padding_mask, 'b s -> b 1 1 s'), 0.0)
if seqlen_q_og < seqlen_q:
S_converted = S_converted[:, :, :seqlen_q_og, :]
else:
S_converted = F.pad(S_converted, (0, 0, 0, seqlen_q_og - seqlen_q))
if seqlen_k_og < seqlen_k:
S_converted = S_converted[:, :, :, :seqlen_k_og]
else:
S_converted = F.pad(S_converted, (0, seqlen_k_og - seqlen_k))
return S_converted
def normalize_flash_attn_S(attn_unnorm, q, k, v, query_padding_mask=None, key_padding_mask=None,
is_dropout=False, causal=False):
"""
Arguments:
q: (batch_size, seqlen_q, nheads, head_dim)
k, v: (batch_size, seqlen_k, nheads, head_dim)
key_padding_mask: (batch_size, seqlen_q)
Output:
softmax_lse: (batch_size, nheads, seqlen_q)
softmax_max: (batch_size, nheads, seqlen_q)
"""
q, k, v = q.float(), k.float(), v.float()
_, seqlen_q, _, head_dim = q.shape
seqlen_k = k.shape[1]
scores = torch.einsum('bthd,bshd->bhts', q / math.sqrt(head_dim), k)
if key_padding_mask is not None:
scores.masked_fill_(rearrange(~key_padding_mask, 'b s -> b 1 1 s'), float('-inf'))
if causal:
causal_mask = torch.triu(torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=q.device), 1)
scores.masked_fill_(causal_mask, float('-inf'))
_, block_size_n = _get_block_size(scores.device, head_dim, is_dropout, causal)
scores_block = scores.split(block_size_n, dim=-1)
lse_block = torch.stack([torch.logsumexp(s, dim=-1) for s in scores_block], dim=-1)
lse = torch.logsumexp(lse_block, dim=-1)
scores_max_block = torch.stack([torch.amax(s, dim=-1) for s in scores_block], dim=-1)
cummax_block = torch.cummax(scores_max_block.flip(-1), dim=-1).values.flip(-1).unbind(dim=-1)
attn_unnorm_block = attn_unnorm.split(block_size_n, dim=-1)
attn_norm = torch.cat([a / rearrange(torch.exp(lse - m), 'b h s -> b h s 1')
for a, m in zip(attn_unnorm_block, cummax_block)], dim=-1)
if query_padding_mask is not None:
attn_norm.masked_fill_(rearrange(~query_padding_mask, 'b s -> b 1 s 1'), 0.0)
return attn_norm.to(dtype=attn_unnorm.dtype)
def get_dropout_fraction(dropout_mask, query_padding_mask=None, key_padding_mask=None, causal=False):
"""
dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k), bool. True means keep, False means drop.
query_padding_mask: (batch_size, seqlen_q)
key_padding_mask: (batch_size, seqlen_k)
"""
batch_size, nheads, seqlen_q, seqlen_k = dropout_mask.shape
dropped = ~dropout_mask
if query_padding_mask is not None:
dropped.masked_fill_(rearrange(~query_padding_mask, 'b s -> b 1 s 1'), False)
if key_padding_mask is not None:
dropped.masked_fill_(rearrange(~key_padding_mask, 'b s -> b 1 1 s'), False)
if causal:
causal_mask = torch.triu(torch.ones(seqlen_q, seqlen_k, dtype=torch.bool,
device=dropout_mask.device), 1)
dropped.masked_fill_(causal_mask, False)
dropped_total = dropped.sum()
query_lengths = (query_padding_mask.sum(dim=-1) if query_padding_mask is not None
else torch.full((batch_size,), seqlen_q, device=dropout_mask.device))
key_lengths = (key_padding_mask.sum(dim=-1) if key_padding_mask is not None
else torch.full((batch_size,), seqlen_k, device=dropout_mask.device))
if not causal:
numel_per_batch = query_lengths * key_lengths
else:
numel_per_batch = torch.where(
query_lengths <= key_lengths,
query_lengths * (query_lengths + 1) / 2,
query_lengths * key_lengths - (key_lengths * (key_lengths - 1) / 2)
)
return dropped_total / (numel_per_batch.sum() * nheads)
@pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize('dtype', [torch.float16])
@pytest.mark.parametrize('causal', [False, True])
# @pytest.mark.parametrize('causal', [True])
@pytest.mark.parametrize('d', [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 64, 96, 128])
# @pytest.mark.parametrize('d', [64])
# @pytest.mark.parametrize('seqlen', [128, 256, 384, 512, 768, 1024, 2048])
@pytest.mark.parametrize('seqlen', [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048])
# @pytest.mark.parametrize('seqlen', [97])
@pytest.mark.parametrize('dropout_p', [0.0, 0.17])
# @pytest.mark.parametrize('dropout_p', [0.17])
def test_flash_attn_qkvpacked(seqlen, d, dropout_p, causal, dtype):
if seqlen >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30:
pytest.skip() # Reference implementation OOM
device = 'cuda'
# set seed
torch.random.manual_seed(0)
batch_size = 16
nheads = 9
qkv = torch.randn(batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype,
requires_grad=True)
out, lse, S_dmask = flash_attn_qkvpacked_func(
qkv, dropout_p, return_attn_probs=True, causal=causal
)
if dropout_p > 0.0:
S_dmask_converted = convert_flash_attn_S_to_softmax(
S_dmask, None, None, d, dropout_p > 0.0, causal=causal
)[:, :, :seqlen, :seqlen]
dropout_mask = S_dmask_converted >= 0
attn_unnorm = S_dmask_converted.abs()
attn = normalize_flash_attn_S(attn_unnorm, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2],
None, None, dropout_p > 0.0, causal=causal)
dropout_fraction = get_dropout_fraction(dropout_mask, None, None, causal=causal).item()
print(f'Actual dropout fraction: {dropout_fraction}')
else:
dropout_mask = None
out_ref, attn_ref = attention_qkvpacked_ref(qkv, None, dropout_p, dropout_mask, causal=causal)
out_pt, attn_pt = attention_qkvpacked_ref(qkv, None, dropout_p, dropout_mask, causal=causal,
upcast=False, reorder_ops=True)
# v = qkv[:, :, 2].float()
# qk = torch.einsum('bshd,bthd->bhst', qkv[:, :, 0], qkv[:, :, 1]).float()
# if causal:
# causal_mask = torch.triu(torch.ones(seqlen, seqlen, dtype=torch.bool, device=qkv.device), 1)
# qk.masked_fill_(causal_mask, float('-inf'))
# m = qk.amax(-1, keepdim=True)
# s_tmp = torch.exp((qk - m) / math.sqrt(d))
# p_tmp = torch.softmax(qk / math.sqrt(d), -1)
# p_dropped = p_tmp if dropout_mask is None else p_tmp.masked_fill(~dropout_mask, 0)
# lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
# qk_max1 = torch.max(qk[:, :, 128:, 192:], -1, keepdim=True).values
# qk_max2 = torch.max(qk[:, :, 128:, 128:], -1, keepdim=True).values
# qk_max3 = torch.max(qk[:, :, 128:, 64:], -1, keepdim=True).values
# qk_max4 = torch.max(qk[:, :, 128:, :], -1, keepdim=True).values
# o1 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 192:] - qk_max1) / math.sqrt(d)), v[:, 192:])
# o2 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 128:] - qk_max2) / math.sqrt(d)), v[:, 128:])
# o3 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 64:] - qk_max3) / math.sqrt(d)), v[:, 64:])
# o4 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, :] - qk_max4) / math.sqrt(d)), v[:, :])
print(f'Output max diff: {(out - out_ref).abs().max().item()}')
print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
print(f'Pytorch max diff: {(out_pt - out_ref).abs().max().item()}')
print(f'Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}')
if dropout_p > 0.0:
print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}')
print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}')
g = torch.randn_like(out)
# do_o = (g.float() * out.float()).sum(-1)
# dv_tmp = torch.einsum('bhts,bthd->bshd', attn_pt[:, :, :64], g[:, :64])
# dv_tmp1 = torch.einsum('bhts,bthd->bshd', attn_pt[:, :, 64:], g[:, 64:])
if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
dqkv, = torch.autograd.grad(out, qkv, g)
dqkv_ref, = torch.autograd.grad(out_ref, qkv, g)
dqkv_pt, = torch.autograd.grad(out_pt, qkv, g)
print(f'dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}')
print(f'dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}')
print(f'dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}')
print(f'dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}')
print(f'dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}')
print(f'dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}')
print(f'dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}')
print(f'dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}')
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
if dropout_p > 0.0:
assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
assert abs(dropout_fraction - dropout_p) <= 0.01
if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
@pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize('dtype', [torch.float16])
@pytest.mark.parametrize('causal', [False, True])
# @pytest.mark.parametrize('causal', [False])
@pytest.mark.parametrize('d', [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [64])
@pytest.mark.parametrize('seqlen', [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048])
# @pytest.mark.parametrize('seqlen', [128])
@pytest.mark.parametrize('dropout_p', [0.0, 0.17])
# @pytest.mark.parametrize('dropout_p', [0.0])
def test_flash_attn_varlen_qkvpacked(seqlen, d, dropout_p, causal, dtype):
if seqlen >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30:
pytest.skip() # Reference implementation OOM
device = 'cuda'
# set seed
torch.random.manual_seed(0)
batch_size = 5
nheads = 6
qkv = torch.randn(batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype,
requires_grad=True)
key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random')
# key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full')
qkv_unpad, cu_seqlens, max_seqlen, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv(
*qkv.unbind(dim=2), key_padding_mask, key_padding_mask, qkvpacked=True
)
out_unpad, sm_lse, S_dmask = flash_attn_varlen_qkvpacked_func(
qkv_unpad, cu_seqlens, max_seqlen, dropout_p, return_attn_probs=True, causal=causal
)
out = output_pad_fn(out_unpad)
if dropout_p > 0.0:
S_dmask_converted = convert_flash_attn_S_to_softmax(
S_dmask, key_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal
)[:, :, :seqlen, :seqlen]
dropout_mask = S_dmask_converted >= 0
attn_unnorm = S_dmask_converted.abs()
attn = normalize_flash_attn_S(attn_unnorm, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2],
key_padding_mask, key_padding_mask, dropout_p > 0.0,
causal=causal)
dropout_fraction = get_dropout_fraction(dropout_mask, key_padding_mask, key_padding_mask,
causal=causal).item()
print(f'Actual dropout fraction: {dropout_fraction}')
else:
dropout_mask = None
out_ref, attn_ref = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask,
causal=causal)
out_pt, attn_pt = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask,
causal=causal, upcast=False, reorder_ops=True)
print(f'Output max diff: {(out - out_ref).abs().max().item()}')
print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
print(f'Pytorch max diff: {(out_pt - out_ref).abs().max().item()}')
print(f'Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}')
if dropout_p > 0.0:
print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}')
print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}')
g = torch.randn_like(out)
if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
dqkv_unpad, = torch.autograd.grad(out, qkv_unpad, g)
dqkv = dqkv_pad_fn(dqkv_unpad)
dqkv_ref, = torch.autograd.grad(out_ref, qkv, g)
dqkv_pt, = torch.autograd.grad(out_pt, qkv, g)
print(f'dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}')
print(f'dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}')
print(f'dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}')
print(f'dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}')
print(f'dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}')
print(f'dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}')
print(f'dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}')
print(f'dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}')
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
if dropout_p > 0.0:
assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
assert abs(dropout_fraction - dropout_p) <= 0.01
if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
@pytest.mark.parametrize('kvpacked', [True, False])
# @pytest.mark.parametrize('kvpacked', [False])
@pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
@pytest.mark.parametrize('mha_type', ["mha", "mqa", "gqa"])
# @pytest.mark.parametrize('mha_type', ["mha"])
@pytest.mark.parametrize('causal', [False, True])
# @pytest.mark.parametrize('causal', [False])
@pytest.mark.parametrize('d', [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize('d', [64])
@pytest.mark.parametrize('seqlen_q,seqlen_k', [(113, 203), (128, 217), (113, 211), (108, 256), (256, 512), (512, 256), (1024, 1024), (1023, 1024), (1024, 1023), (2048, 2048)])
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
@pytest.mark.parametrize('dropout_p', [0.0, 0.17])
# @pytest.mark.parametrize('dropout_p', [0.0])
def test_flash_attn_output(seqlen_q, seqlen_k, d, dropout_p, causal, mha_type, dtype, kvpacked):
if max(seqlen_q, seqlen_k) >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30:
pytest.skip() # Reference implementation OOM
device = 'cuda'
# set seed
torch.random.manual_seed(0)
batch_size = 16
nheads = 9
nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
assert nheads % nheads_k == 0
q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
if kvpacked:
kv = torch.randn(batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype,
requires_grad=True)
else:
k = torch.randn(batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype,
requires_grad=True)
v = torch.randn(batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype,
requires_grad=True)
if kvpacked:
out, lse, S_dmask = flash_attn_kvpacked_func(
q, kv, dropout_p, return_attn_probs=True, causal=causal
)
else:
out, lse, S_dmask = flash_attn_func(
q, k, v, dropout_p, return_attn_probs=True, causal=causal
)
if dropout_p > 0.0:
S_dmask_converted = convert_flash_attn_S_to_softmax(
S_dmask, None, None, d, dropout_p > 0.0, causal=causal
)[:, :, :seqlen_q, :seqlen_k]
dropout_mask = S_dmask_converted >= 0
attn_unnorm = S_dmask_converted.abs()
if kvpacked:
kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
k_rep, v_rep = kv_rep.unbind(dim=2)
else:
k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
attn = normalize_flash_attn_S(attn_unnorm, q, k_rep, v_rep,
None, None, dropout_p > 0.0, causal=causal)
dropout_fraction = get_dropout_fraction(dropout_mask, None, None, causal=causal).item()
print(f'Actual dropout fraction: {dropout_fraction}')
else:
dropout_mask = None
if kvpacked:
out_ref, attn_ref = attention_kvpacked_ref(q, kv, None, None, dropout_p, dropout_mask,
causal=causal)
out_pt, attn_pt = attention_kvpacked_ref(q, kv, None, None, dropout_p, dropout_mask,
causal=causal, upcast=False, reorder_ops=True)
else:
out_ref, attn_ref = attention_ref(q, k, v, None, None, dropout_p, dropout_mask,
causal=causal)
out_pt, attn_pt = attention_ref(q, k, v, None, None, dropout_p, dropout_mask,
causal=causal, upcast=False, reorder_ops=True)
print(f'Output max diff: {(out - out_ref).abs().max().item()}')
print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
print(f'Pytorch max diff: {(out_pt - out_ref).abs().max().item()}')
print(f'Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}')
if dropout_p > 0.0:
print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}')
print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}')
g = torch.randn_like(out)
do_o = (g.float() * out.float()).sum(-1)
if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
if kvpacked:
dq, dkv, = torch.autograd.grad(out, (q, kv), g)
dk, dv = dkv.unbind(2)
dq_ref, dkv_ref, = torch.autograd.grad(out_ref, (q, kv), g)
dk_ref, dv_ref = dkv_ref.unbind(2)
dq_pt, dkv_pt, = torch.autograd.grad(out_pt, (q, kv), g)
dk_pt, dv_pt = dkv_pt.unbind(2)
else:
dq, dk, dv, = torch.autograd.grad(out, (q, k, v), g)
dq_ref, dk_ref, dv_ref, = torch.autograd.grad(out_ref, (q, k, v), g)
dq_pt, dk_pt, dv_pt, = torch.autograd.grad(out_pt, (q, k, v), g)
print(f'dQ max diff: {(dq - dq_ref).abs().max().item()}')
print(f'dK max diff: {(dk - dk_ref).abs().max().item()}')
print(f'dV max diff: {(dv - dv_ref).abs().max().item()}')
print(f'dQ mean diff: {(dq - dq_ref).abs().mean().item()}')
print(f'dK mean diff: {(dk - dk_ref).abs().mean().item()}')
print(f'dV mean diff: {(dv - dv_ref).abs().mean().item()}')
print(f'dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}')
print(f'dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}')
print(f'dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}')
print(f'dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}')
print(f'dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}')
print(f'dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}')
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
if dropout_p > 0.0:
assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
assert abs(dropout_fraction - dropout_p) <= 0.01
if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item()
assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item()
assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item()
@pytest.mark.parametrize('kvpacked', [True, False])
# @pytest.mark.parametrize('kvpacked', [False])
@pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize('dtype', [torch.float16])
@pytest.mark.parametrize('mha_type', ["mha", "mqa", "gqa"])
# @pytest.mark.parametrize('mha_type', ["mqa"])
@pytest.mark.parametrize('causal', [False, True])
# @pytest.mark.parametrize('causal', [True])
@pytest.mark.parametrize('d', [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [64])
@pytest.mark.parametrize('seqlen_q,seqlen_k', [(113, 203), (128, 217), (113, 211), (108, 256), (256, 512), (512, 256), (1024, 1024), (1023, 1024), (1024, 1023), (2048, 2048)])
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
@pytest.mark.parametrize('dropout_p', [0.0, 0.17])
# @pytest.mark.parametrize('dropout_p', [0.0])
def test_flash_attn_varlen_output(seqlen_q, seqlen_k, d, dropout_p, causal, mha_type, dtype,
kvpacked):
if max(seqlen_q, seqlen_k) >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30:
pytest.skip() # Reference implementation OOM
device = 'cuda'
# set seed
torch.random.manual_seed(0)
batch_size = 16
nheads = 9
nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
assert nheads % nheads_k == 0
q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
if kvpacked:
kv = torch.randn(batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype,
requires_grad=True)
else:
k = torch.randn(batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype,
requires_grad=True)
v = torch.randn(batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype,
requires_grad=True)
query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode='random')
key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode='random')
# key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode='full')
if kvpacked:
(q_unpad, kv_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q, kv,
output_pad_fn, dq_pad_fn, dkv_pad_fn) = generate_qkv(
q, *kv.unbind(dim=2), query_padding_mask, key_padding_mask, kvpacked=True
)
out_unpad, sm_lse, S_dmask = flash_attn_varlen_kvpacked_func(
q_unpad, kv_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, return_attn_probs=True, causal=causal
)
else:
(q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q, k, v,
output_pad_fn, dq_pad_fn, dk_pad_fn) = generate_qkv(
q, k, v, query_padding_mask, key_padding_mask, kvpacked=False
)
out_unpad, sm_lse, S_dmask = flash_attn_varlen_func(
q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, return_attn_probs=True, causal=causal
)
out = output_pad_fn(out_unpad)
if dropout_p > 0.0:
S_dmask_converted = convert_flash_attn_S_to_softmax(
S_dmask, query_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal
)[:, :, :seqlen_q, :seqlen_k]
dropout_mask = S_dmask_converted >= 0
attn_unnorm = S_dmask_converted.abs()
if kvpacked:
kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
k_rep, v_rep = kv_rep.unbind(dim=2)
else:
k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
attn = normalize_flash_attn_S(attn_unnorm, q, k_rep, v_rep,
query_padding_mask, key_padding_mask,
dropout_p > 0.0, causal=causal)
dropout_fraction = get_dropout_fraction(dropout_mask, query_padding_mask,
key_padding_mask, causal=causal).item()
print(f'Actual dropout fraction: {dropout_fraction}')
else:
dropout_mask = None
if kvpacked:
out_ref, attn_ref = attention_kvpacked_ref(q, kv, query_padding_mask, key_padding_mask,
dropout_p, dropout_mask, causal=causal)
out_pt, attn_pt = attention_kvpacked_ref(q, kv, query_padding_mask, key_padding_mask,
dropout_p, dropout_mask,
causal=causal, upcast=False, reorder_ops=True)
else:
out_ref, attn_ref = attention_ref(q, k, v, query_padding_mask, key_padding_mask,
dropout_p, dropout_mask, causal=causal)
out_pt, attn_pt = attention_ref(q, k, v, query_padding_mask, key_padding_mask,
dropout_p, dropout_mask,
causal=causal, upcast=False, reorder_ops=True)
print(f'Output max diff: {(out - out_ref).abs().max().item()}')
print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
print(f'Pytorch max diff: {(out_pt - out_ref).abs().max().item()}')
print(f'Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}')
if dropout_p > 0.0:
print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}')
print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}')
g = torch.randn_like(out)
if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
if kvpacked:
dq_unpad, dkv_unpad, = torch.autograd.grad(out, (q_unpad, kv_unpad), g)
dk, dv = dkv_pad_fn(dkv_unpad).unbind(2)
dq_ref, dkv_ref, = torch.autograd.grad(out_ref, (q, kv), g)
dk_ref, dv_ref = dkv_ref.unbind(2)
dq_pt, dkv_pt, = torch.autograd.grad(out_pt, (q, kv), g)
dk_pt, dv_pt = dkv_pt.unbind(2)
else:
dq_unpad, dk_unpad, dv_unpad, = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
dk = dk_pad_fn(dk_unpad)
dv = dk_pad_fn(dv_unpad)
dq_ref, dk_ref, dv_ref, = torch.autograd.grad(out_ref, (q, k, v), g)
dq_pt, dk_pt, dv_pt, = torch.autograd.grad(out_pt, (q, k, v), g)
dq = dq_pad_fn(dq_unpad)
print(f'dQ max diff: {(dq - dq_ref).abs().max().item()}')
print(f'dK max diff: {(dk - dk_ref).abs().max().item()}')
print(f'dV max diff: {(dv - dv_ref).abs().max().item()}')
print(f'dQ mean diff: {(dq - dq_ref).abs().mean().item()}')
print(f'dK mean diff: {(dk - dk_ref).abs().mean().item()}')
print(f'dV mean diff: {(dv - dv_ref).abs().mean().item()}')
print(f'dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}')
print(f'dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}')
print(f'dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}')
print(f'dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}')
print(f'dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}')
print(f'dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}')
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
if dropout_p > 0.0:
assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
assert abs(dropout_fraction - dropout_p) <= 0.01
if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item()
assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item()
assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item()
@pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize('dtype', [torch.float16])
@pytest.mark.parametrize('causal', [False, True])
# @pytest.mark.parametrize('causal', [False])
# @pytest.mark.parametrize('d', [32, 56, 64, 80, 96, 128])
@pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [128])
# @pytest.mark.parametrize('seqlen', [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048])
# @pytest.mark.parametrize('seqlen', [128, 256, 384, 512, 768, 1024, 2048])
@pytest.mark.parametrize('seqlen', [128])
# @pytest.mark.parametrize('dropout_p', [0.0, 0.17])
@pytest.mark.parametrize('dropout_p', [0.0])
def test_flash_attn_race_condition(seqlen, d, dropout_p, causal, dtype):
device = 'cuda'
# set seed
torch.random.manual_seed(0)
batch_size = 60 # Sometimes we need large batch size for the race conditions to trigger
nheads = 4
qkv = torch.randn(batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype,
requires_grad=True)
out0, lse0, _ = flash_attn_qkvpacked_func(
qkv, dropout_p, return_attn_probs=True, causal=causal
)
g = torch.randn_like(out0)
if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
dqkv0, = torch.autograd.grad(out0, qkv, g)
# Numerical error if we just do any arithmetic on dq
dq_atol = 2 * ((dqkv0[:, :, 0] + 0.3 - 0.3) - dqkv0[:, :, 0]).abs().max().item()
for i in range(200):
torch.random.manual_seed(0)
out, lse, S_dmask = flash_attn_qkvpacked_func(
qkv, dropout_p, return_attn_probs=True, causal=causal
)
assert torch.equal(out, out0)
assert torch.equal(lse, lse0)
if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
dqkv, = torch.autograd.grad(out, qkv, g)
dq_equal = torch.allclose(dqkv[:, :, 0], dqkv0[:, :, 0], atol=dq_atol)
if not dq_equal:
dq0 = dqkv0[:, :, 0]
dq = dqkv[:, :, 0]
print(f'Iter {i}, {dq_atol = }, dQ max diff: {(dqkv[:, :, 0] - dqkv0[:, :, 0]).abs().max().item()}')
assert dq_equal
assert torch.equal(dqkv[:, :, 1], dqkv0[:, :, 1])
assert torch.equal(dqkv[:, :, 2], dqkv0[:, :, 2])
@pytest.mark.parametrize('dtype', [torch.float16])
@pytest.mark.parametrize('causal', [False, True])
# @pytest.mark.parametrize('causal', [False])
@pytest.mark.parametrize('d', [16, 32, 64])
# @pytest.mark.parametrize('d', [16])
@pytest.mark.parametrize('seqlen', [1, 2, 5, 17, 128])
# @pytest.mark.parametrize('seqlen', [2])
def test_flash_attn_bwd_overflow(seqlen, d, causal, dtype):
""" We previously had a bug where not masking elements beyond seqlen_k caused NaN in dQ,
in the case where seqlen % 128 != 0.
"""
device = 'cuda'
# set seed
torch.random.manual_seed(0)
batch_size = 2
nheads = 5
q = torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda") * 5
k, v = [torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda") * 3 for _ in range(2)]
q.requires_grad_(True)
k.requires_grad_(True)
v.requires_grad_(True)
out = flash_attn_func(q, k, v, causal=causal)
g = torch.randn_like(out)
out.backward(g)
q_pt = q.detach().clone().requires_grad_(True)
k_pt = k.detach().clone().requires_grad_(True)
v_pt = v.detach().clone().requires_grad_(True)
out_pt, _ = attention_ref(q_pt, k_pt, v_pt, causal=causal, upcast=False, reorder_ops=True)
out_pt.backward(g)
q_ref = q.detach().clone().requires_grad_(True)
k_ref = k.detach().clone().requires_grad_(True)
v_ref = v.detach().clone().requires_grad_(True)
out_ref, attn_ref = attention_ref(q_ref, k_ref, v_ref, causal=causal)
out_ref.backward(g)
print(f'dQ max diff: {(q.grad - q_ref.grad).abs().max().item()}')
print(f'dK max diff: {(k.grad - k_ref.grad).abs().max().item()}')
print(f'dV max diff: {(v.grad - v_ref.grad).abs().max().item()}')
print(f'dQ Pytorch max diff: {(q_pt.grad - q_ref.grad).abs().max().item()}')
print(f'dK Pytorch max diff: {(k_pt.grad - k_ref.grad).abs().max().item()}')
print(f'dV Pytorch max diff: {(v_pt.grad - v_ref.grad).abs().max().item()}')
assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
assert (q.grad - q_ref.grad).abs().max().item() <= 5 * (q_pt.grad - q_ref.grad).abs().max().item() + 1e-3
assert (k.grad - k_ref.grad).abs().max().item() <= 5 * (k_pt.grad - k_ref.grad).abs().max().item() + 1e-3
assert (v.grad - v_ref.grad).abs().max().item() <= 5 * (v_pt.grad - v_ref.grad).abs().max().item() + 1e-3
@pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
@pytest.mark.parametrize('causal', [False, True])
# @pytest.mark.parametrize('causal', [False])
@pytest.mark.parametrize('d', [64, 128])
# @pytest.mark.parametrize('d', [64])
@pytest.mark.parametrize('seqlen', [97, 128, 200, 256])
# @pytest.mark.parametrize('seqlen', [128])
def test_flash_attn_bwd_transpose(seqlen, d, causal, dtype):
""" We previously had a bug where we were using the wrong strides of dout, which shows up
when dout is not contiguous.
"""
device = 'cuda'
# set seed
torch.random.manual_seed(0)
batch_size = 5
nheads = 2
q, k, v = [torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda",
requires_grad=True)
for _ in range(3)]
out = rearrange(flash_attn_func(q, k, v, causal=causal), "b s ... -> s b ...")
# So g is not contiguous
g = torch.randn(seqlen, 2 * batch_size, nheads, d, dtype=dtype, device="cuda")[:, ::2]
out.backward(g)
q_pt = q.detach().clone().requires_grad_(True)
k_pt = k.detach().clone().requires_grad_(True)
v_pt = v.detach().clone().requires_grad_(True)
out_pt, attn_pt = attention_ref(q_pt, k_pt, v_pt, causal=causal, upcast=False, reorder_ops=True)
out_pt = rearrange(out_pt, "b s ... -> s b ...")
out_pt.backward(g)
q_ref = q.detach().clone().requires_grad_(True)
k_ref = k.detach().clone().requires_grad_(True)
v_ref = v.detach().clone().requires_grad_(True)
out_ref, attn_ref = attention_ref(q_ref, k_ref, v_ref, causal=causal)
out_ref = rearrange(out_ref, "b s ... -> s b ...")
out_ref.backward(g)
print(f'dQ max diff: {(q.grad - q_ref.grad).abs().max().item()}')
print(f'dK max diff: {(k.grad - k_ref.grad).abs().max().item()}')
print(f'dV max diff: {(v.grad - v_ref.grad).abs().max().item()}')
print(f'dQ Pytorch max diff: {(q_pt.grad - q_ref.grad).abs().max().item()}')
print(f'dK Pytorch max diff: {(k_pt.grad - k_ref.grad).abs().max().item()}')
print(f'dV Pytorch max diff: {(v_pt.grad - v_ref.grad).abs().max().item()}')
assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
assert (q.grad - q_ref.grad).abs().max().item() <= 2 * (q_pt.grad - q_ref.grad).abs().max().item()
assert (k.grad - k_ref.grad).abs().max().item() <= 2 * (k_pt.grad - k_ref.grad).abs().max().item()
assert (v.grad - v_ref.grad).abs().max().item() <= 2 * (v_pt.grad - v_ref.grad).abs().max().item()