flash-attention/hopper/test_flash_attn.py
2024-11-09 17:05:01 -08:00

1188 lines
36 KiB
Python

import math
import einops
import pytest
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from flash_attn_interface import (
_flash_attn_forward,
flash_attn_func,
flash_attn_varlen_func,
)
from tests.test_util import (
attention_ref,
construct_local_mask,
generate_qkv,
generate_random_padding_mask,
)
ABS_TOL = 5e-3
REL_TOL = 1e-1
def print_diffs(out, out_ref):
out_1d = out.flatten()
out_ref_1d = out_ref.flatten()
for idx, (e_o, e_o_ref) in enumerate(zip(out_1d, out_ref_1d)):
diff = e_o - e_o_ref
abs_diff = abs(diff)
abs_ref = abs(e_o_ref + 1e-5)
relative_diff = abs_diff / abs_ref
if abs_diff > ABS_TOL or relative_diff > REL_TOL:
print(f"==== diff ==== {idx}, test: {e_o}, ref: {e_o_ref}")
@pytest.mark.parametrize("dtype", [torch.float8_e4m3fn])
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
@pytest.mark.parametrize("causal", [False, True])
@pytest.mark.parametrize("local", [False, True])
@pytest.mark.parametrize("deterministic", [True])
@pytest.mark.parametrize("gqa_parallel", [False, True])
@pytest.mark.parametrize("d", [64, 128, 256])
# @pytest.mark.parametrize("descale", [1.0])
@pytest.mark.parametrize("descale", [1.0, 2.0, 3.0])
@pytest.mark.parametrize(
"seqlen_q,seqlen_k",
[
(1, 1),
(64, 128),
(128, 128),
(256, 256),
(113, 203),
(128, 217),
(113, 211),
(108, 256),
(256, 512),
(384, 256),
(640, 128),
(512, 256),
(1024, 1024),
(1023, 1024),
(1024, 1023),
(4096, 4096),
(4224, 4224),
],
)
def test_flash_attn_output_fp8(
seqlen_q,
seqlen_k,
d,
causal,
local,
deterministic,
mha_type,
dtype,
descale,
gqa_parallel,
):
device = "cuda"
dtype_init = torch.bfloat16
print(dtype)
print("causal", causal)
print("local", local)
print("gqa_parallel", gqa_parallel)
# set seed
torch.random.manual_seed(42)
# batch_size = 40
# nheads = 16
batch_size = 4
nheads = 6
nheads_kv = 6 if mha_type == "mha" else (2 if mha_type == "gqa" else 1)
# nheads_kv = 1
# batch_size = 9
# nheads = 6
window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
q = torch.randn(
batch_size,
seqlen_q,
nheads,
d,
device=device,
dtype=dtype_init,
requires_grad=True,
)
k = torch.randn(
batch_size,
seqlen_k,
nheads_kv,
d,
device=device,
dtype=dtype_init,
requires_grad=True,
)
v = torch.randn(
batch_size,
seqlen_k,
nheads_kv,
d,
device=device,
dtype=dtype_init,
requires_grad=True,
)
q = q.to(dtype)
k = k.to(dtype)
v = v.to(dtype)
softmax_scale = q.shape[-1] ** (-0.5)
descale_q = torch.tensor([descale], dtype=torch.float32, device="cuda")
descale_k = torch.tensor([descale], dtype=torch.float32, device="cuda")
descale_v = torch.tensor([descale], dtype=torch.float32, device="cuda")
out, lse = flash_attn_func(
q,
k,
v,
causal=causal,
window_size=window_size,
deterministic=deterministic,
gqa_parallel=gqa_parallel,
descale_q=descale_q,
descale_k=descale_k,
descale_v=descale_v,
)
q = q.to(dtype_init)
k = k.to(dtype_init)
v = v.to(dtype_init)
descale_q = descale_q.to(dtype_init)
descale_k = descale_k.to(dtype_init)
descale_v = descale_v.to(dtype_init)
q = q * descale_q
k = k * descale_k
v = v * descale_v
out_ref, attn_ref = attention_ref(
q,
k,
v,
None,
None,
causal=causal,
window_size=window_size,
)
out_pt, attn_pt = attention_ref(
q,
k,
v,
None,
None,
causal=causal,
window_size=window_size,
upcast=False,
reorder_ops=True,
)
# qk = torch.einsum('bshd,bthd->bhst', q, k).float()
# m = qk.amax(-1, keepdim=True)
# s_tmp = torch.exp((qk - m) / math.sqrt(d))
# exp_sum = s_tmp.sum(-1)
# qk = torch.einsum('bthd,bshd->bhts', q.float() / math.sqrt(d), k.float())
# lse_ref = torch.logsumexp(qk, dim=-1)
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
# if not causal:
# print(f"LSE max diff: {(lse - lse_ref).abs().max().item()}")
# breakpoint()
# dS = torch.einsum('bthd,bshd->bhts', g.float(), v.float())
# P = torch.softmax(qk, -1)
# dP = P * (dS - do_o.unsqueeze(1))
# dQ = torch.einsum('bhts,bshd->bthd', dP, k.float())
# dV = torch.einsum('bhts,bthd->bshd', P, g.float())
# dK = torch.einsum('bhts,bthd->bshd', dP, q.float())
# breakpoint()
# assert (out - out_ref).abs().max().item() <= 4 * (out_pt - out_ref).abs().max().item() + 1e-2
atol = 4 * (out_pt - out_ref).abs().max().item() + 1e-2
torch.testing.assert_close(out, out_ref, rtol=1e-2, atol=atol, check_dtype=False)
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
# @pytest.mark.parametrize("dtype", [torch.float8_e4m3fn])
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
# @pytest.mark.parametrize("mha_type", ["mha"])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [False])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
@pytest.mark.parametrize("gqa_parallel", [False, True])
# @pytest.mark.parametrize("gqa_parallel", [False])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64, 128, 256])
# @pytest.mark.parametrize("d", [64, 96, 128])
# @pytest.mark.parametrize("d", [64])
@pytest.mark.parametrize("d", [64, 128, 256])
@pytest.mark.parametrize("descale", [1.0])
# @pytest.mark.parametrize("descale", [1.0, 2.0, 3.0, 4.0])
@pytest.mark.parametrize(
"seqlen_q,seqlen_k",
[
(1, 1),
(64, 128),
(128, 128),
(256, 256),
(113, 203),
(128, 217),
(113, 211),
(108, 256),
(256, 512),
(384, 256),
(640, 128),
(512, 256),
(1024, 1024),
(1023, 1024),
(1024, 1023),
(4096, 4096),
(4224, 4224),
],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
def test_flash_attn_output(
seqlen_q,
seqlen_k,
d,
causal,
local,
deterministic,
mha_type,
dtype,
descale,
gqa_parallel,
):
device = "cuda"
if dtype == torch.float8_e4m3fn:
dtype_init = torch.bfloat16
else:
dtype_init = dtype
print(dtype)
print("causal", causal)
print("local", local)
print("gqa_parallel", gqa_parallel)
# set seed
torch.random.manual_seed(42)
# batch_size = 40
# nheads = 16
batch_size = 4
nheads = 6
nheads_kv = 6 if mha_type == "mha" else (2 if mha_type == "gqa" else 1)
# nheads_kv = 1
# batch_size = 9
# nheads = 6
window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
q = torch.randn(
batch_size,
seqlen_q,
nheads,
d,
device=device,
dtype=dtype_init,
requires_grad=True,
)
k = torch.randn(
batch_size,
seqlen_k,
nheads_kv,
d,
device=device,
dtype=dtype_init,
requires_grad=True,
)
v = torch.randn(
batch_size,
seqlen_k,
nheads_kv,
d,
device=device,
dtype=dtype_init,
requires_grad=True,
)
q = q.to(dtype)
k = k.to(dtype)
v = v.to(dtype)
softmax_scale = q.shape[-1] ** (-0.5)
descale_q = torch.tensor([descale], dtype=torch.float32, device="cuda")
descale_k = torch.tensor([descale], dtype=torch.float32, device="cuda")
descale_v = torch.tensor([descale], dtype=torch.float32, device="cuda")
if dtype != torch.float8_e4m3fn:
out, lse = flash_attn_func(
q,
k,
v,
causal=causal,
window_size=window_size,
deterministic=deterministic,
gqa_parallel=gqa_parallel,
)
else:
out, lse = flash_attn_func(
q,
k,
v,
causal=causal,
window_size=window_size,
deterministic=deterministic,
gqa_parallel=gqa_parallel,
descale_q=descale_q,
descale_k=descale_k,
descale_v=descale_v,
)
q = q.to(dtype_init)
k = k.to(dtype_init)
v = v.to(dtype_init)
if dtype == torch.float8_e4m3fn:
descale_q = descale_q.to(dtype_init)
descale_k = descale_k.to(dtype_init)
descale_v = descale_v.to(dtype_init)
q = q * descale_q
k = k * descale_k
v = v * descale_v
out_ref, attn_ref = attention_ref(
q,
k,
v,
None,
None,
causal=causal,
window_size=window_size,
)
out_pt, attn_pt = attention_ref(
q,
k,
v,
None,
None,
causal=causal,
window_size=window_size,
upcast=False,
reorder_ops=True,
)
# qk = torch.einsum('bshd,bthd->bhst', q, k).float()
# m = qk.amax(-1, keepdim=True)
# s_tmp = torch.exp((qk - m) / math.sqrt(d))
# exp_sum = s_tmp.sum(-1)
# qk = torch.einsum('bthd,bshd->bhts', q.float() / math.sqrt(d), k.float())
# lse_ref = torch.logsumexp(qk, dim=-1)
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
# if not causal:
# print(f"LSE max diff: {(lse - lse_ref).abs().max().item()}")
# breakpoint()
if d <= 128 and dtype != torch.float8_e4m3fn:
g = torch.randn_like(out)
do_o = (g.float() * out.float()).sum(-1)
dq, dk, dv = torch.autograd.grad(out, (q, k, v), g)
dq_ref, dk_ref, dv_ref = torch.autograd.grad(out_ref, (q, k, v), g)
dq_pt, dk_pt, dv_pt = torch.autograd.grad(out_pt, (q, k, v), g)
print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
# dS = torch.einsum('bthd,bshd->bhts', g.float(), v.float())
# P = torch.softmax(qk, -1)
# dP = P * (dS - do_o.unsqueeze(1))
# dQ = torch.einsum('bhts,bshd->bthd', dP, k.float())
# dV = torch.einsum('bhts,bthd->bshd', P, g.float())
# dK = torch.einsum('bhts,bthd->bshd', dP, q.float())
# breakpoint()
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
# breakpoint()
if dtype != torch.float8_e4m3fn:
assert (out - out_ref).abs().max().item() <= 2 * (
out_pt - out_ref
).abs().max().item() + 3e-5
else:
# just test correctness of fp8 kernel w/o further quantization techniques
assert (out - out_ref).abs().max().item() <= 4 * (
out_pt - out_ref
).abs().max().item() + 2e-2
if d <= 128 and dtype != torch.float8_e4m3fn:
assert (dq - dq_ref).abs().max().item() <= 2 * (
dq_pt - dq_ref
).abs().max().item() + 3e-5
assert (dk - dk_ref).abs().max().item() <= 2 * (
dk_pt - dk_ref
).abs().max().item() + 3e-5
assert (dv - dv_ref).abs().max().item() <= 2 * (
dv_pt - dv_ref
).abs().max().item() + 3e-5
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
# @pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
# @pytest.mark.parametrize("mha_type", ["mha"])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [True])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [False])
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [False])
@pytest.mark.parametrize("add_unused_qkv", [False, True])
# @pytest.mark.parametrize("add_unused_qkv", [True])
# @pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [256])
# @pytest.mark.parametrize("d", [64, 128, 256])
@pytest.mark.parametrize("d", [64, 128])
# @pytest.mark.parametrize("d", [128])
@pytest.mark.parametrize(
"seqlen_q,seqlen_k",
[
(1, 1),
(1, 3),
(2, 1),
(511, 1),
(3, 513),
(64, 128),
(113, 203),
(128, 128),
(128, 217),
(113, 211),
(108, 256),
(256, 512),
(384, 256),
(512, 256),
(640, 128),
(1024, 1024),
(1023, 1024),
(1024, 1023),
(2048, 2048),
],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
def test_flash_attn_varlen_output(
seqlen_q, seqlen_k, d, causal, local, deterministic, add_unused_qkv, mha_type, dtype
):
if (
max(seqlen_q, seqlen_k) >= 2048
and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
):
pytest.skip() # Reference implementation OOM
device = "cuda"
# set seed
torch.random.manual_seed(0)
# batch_size = 1
# nheads = 1
# nheads_kv = 1
batch_size = 9
nheads = 6
nheads_kv = 6 if mha_type == "mha" else (2 if mha_type == "gqa" else 1)
window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
q = torch.randn(
batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True
)
k = torch.randn(
batch_size,
seqlen_k,
nheads_kv,
d,
device=device,
dtype=dtype,
requires_grad=True,
)
v = torch.randn(
batch_size,
seqlen_k,
nheads_kv,
d,
device=device,
dtype=dtype,
requires_grad=True,
)
query_padding_mask = generate_random_padding_mask(
seqlen_q, batch_size, device, mode="random", zero_lengths=False
)
key_padding_mask = generate_random_padding_mask(
seqlen_k, batch_size, device, mode="random", zero_lengths=True
)
# key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode='full')
def _gen_unused_masks(padding_mask, add_unused, max_seq_len, bs, device):
if add_unused:
another_mask = generate_random_padding_mask(max_seq_len, bs, device)
attn_mask = torch.logical_and(padding_mask, another_mask)
unused_mask = torch.logical_xor(
torch.logical_or(padding_mask, another_mask), attn_mask
)
else:
attn_mask = padding_mask
unused_mask = None
return attn_mask, unused_mask
query_padding_mask, query_unused_mask = _gen_unused_masks(
query_padding_mask, add_unused_qkv, seqlen_q, batch_size, q.device
)
key_padding_mask, key_unused_mask = _gen_unused_masks(
key_padding_mask, add_unused_qkv, seqlen_k, batch_size, k.device
)
(
q_unpad,
k_unpad,
v_unpad,
cu_seqlens_q,
cu_seqlens_k,
seqused_q,
seqused_k,
max_seqlen_q,
max_seqlen_k,
q,
k,
v,
output_pad_fn,
dq_pad_fn,
dk_pad_fn,
) = generate_qkv(
q,
k,
v,
query_padding_mask,
key_padding_mask,
kvpacked=False,
query_unused_mask=query_unused_mask,
key_unused_mask=key_unused_mask,
)
# print("cu_seqlens_q: ", cu_seqlens_q)
# print("cu_seqlens_k: ", cu_seqlens_k)
# print("q_unpad, shape: ", q_unpad.shape)
# print("k_unpad, shape: ", k_unpad.shape)
# print("v_unpad, shape: ", v_unpad.shape)
out_unpad, sm_lse = flash_attn_varlen_func(
q_unpad,
k_unpad,
v_unpad,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
causal=causal,
deterministic=deterministic,
seqused_q=seqused_q,
seqused_k=seqused_k,
window_size=window_size,
)
out = output_pad_fn(out_unpad)
if query_unused_mask is not None:
q_zero_masking = rearrange(query_unused_mask, "b s -> b s 1 1")
out.masked_fill_(q_zero_masking, 0.0)
dropout_mask = None
out_ref, attn_ref = attention_ref(
q,
k,
v,
query_padding_mask,
key_padding_mask,
causal=causal,
window_size=window_size,
)
out_pt, attn_pt = attention_ref(
q,
k,
v,
query_padding_mask,
key_padding_mask,
causal=causal,
window_size=window_size,
upcast=False,
reorder_ops=True,
)
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
g = torch.randn_like(out)
if d <= 128:
(
dq_unpad,
dk_unpad,
dv_unpad,
) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
dk = dk_pad_fn(dk_unpad)
dv = dk_pad_fn(dv_unpad)
if key_unused_mask is not None:
k_zero_masking = rearrange(key_unused_mask, "b s -> b s 1 1")
dk.masked_fill_(k_zero_masking, 0.0)
dv.masked_fill_(k_zero_masking, 0.0)
(
dq_ref,
dk_ref,
dv_ref,
) = torch.autograd.grad(out_ref, (q, k, v), g)
zero_masking = rearrange(
torch.logical_not(torch.any(key_padding_mask, 1)), "b -> b 1 1 1"
)
dk_ref.masked_fill_(zero_masking, 0.0)
dv_ref.masked_fill_(zero_masking, 0.0)
(
dq_pt,
dk_pt,
dv_pt,
) = torch.autograd.grad(out_pt, (q, k, v), g)
dk_pt.masked_fill_(zero_masking, 0.0)
dv_pt.masked_fill_(zero_masking, 0.0)
dq = dq_pad_fn(dq_unpad)
if query_unused_mask is not None:
dq.masked_fill_(q_zero_masking, 0.0)
print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
assert (out - out_ref).abs().max().item() <= 2 * (
out_pt - out_ref
).abs().max().item()
if d <= 128:
assert (dq - dq_ref).abs().max().item() < 1e-4 or (
dq - dq_ref
).abs().max().item() <= 3 * (dq_pt - dq_ref).abs().max().item()
assert (dk - dk_ref).abs().max().item() < 1e-4 or (
dk - dk_ref
).abs().max().item() <= 3 * (dk_pt - dk_ref).abs().max().item()
assert (dv - dv_ref).abs().max().item() < 1e-4 or (
dv - dv_ref
).abs().max().item() <= 3 * (dv_pt - dv_ref).abs().max().item()
@pytest.mark.parametrize("dtype", [torch.bfloat16])
# @pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [False])
@pytest.mark.parametrize("deterministic", [True, False])
# @pytest.mark.parametrize("deterministic", [False])
# @pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [128])
# @pytest.mark.parametrize("d", [64, 128, 256])
@pytest.mark.parametrize("d", [128, 64])
# @pytest.mark.parametrize("d", [128])
@pytest.mark.parametrize(
"seqlen_q,seqlen_k",
[
# (1, 1),
# (1, 3),
# (2, 1),
# (511, 1),
# (3, 513),
# (64, 128),
# (113, 203),
# (128, 128),
# (128, 217),
# (113, 211),
# (108, 256),
(256, 512),
# (384, 256),
(768, 512),
# (512, 256),
# (640, 128),
(1024, 1024),
# (1023, 1024),
# (1024, 1023),
# (2048, 2048),
],
)
@pytest.mark.parametrize("add_unused_qkv", [False])
@pytest.mark.parametrize("shuffle_pages", [True, False])
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
def test_flash_attn_paged1(
seqlen_q,
seqlen_k,
d,
causal,
deterministic,
add_unused_qkv,
mha_type,
dtype,
shuffle_pages,
):
run_conf = locals()
if (
max(seqlen_q, seqlen_k) >= 2048
and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
):
pytest.skip() # Reference implementation OOM
device = "cuda"
# set seed
torch.random.manual_seed(0)
# batch_size = 1
# nheads = 1
batch_size = 9
nheads = 6
nheads_kv = 6 if mha_type == "mha" else (2 if mha_type == "gqa" else 1)
q = torch.randn(
batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True
)
page_size = 256
num_pages = batch_size * seqlen_k // page_size
assert seqlen_k % page_size == 0, "Max seqlen must be divisible by page size"
block_table = torch.reshape(
torch.arange(num_pages, dtype=torch.int32, device=device), (batch_size, -1)
)
k_paged = torch.randn(
num_pages,
page_size,
nheads_kv,
d,
device=device,
dtype=dtype,
requires_grad=True,
)
v_paged = torch.randn(
num_pages,
page_size,
nheads_kv,
d,
device=device,
dtype=dtype,
requires_grad=True,
)
if shuffle_pages:
block_table = torch.randperm(num_pages, dtype=torch.int32, device=device).view(
batch_size, -1
)
k = torch.index_select(k_paged, 0, block_table.view(-1)).view(
batch_size, seqlen_k, nheads_kv, d
)
v = torch.index_select(v_paged, 0, block_table.view(-1)).view(
batch_size, seqlen_k, nheads_kv, d
)
else:
k = torch.reshape(k_paged, (batch_size, seqlen_k, nheads_kv, d))
v = torch.reshape(v_paged, (batch_size, seqlen_k, nheads_kv, d))
query_padding_mask = generate_random_padding_mask(
seqlen_q, batch_size, device, mode="random"
)
key_padding_mask = generate_random_padding_mask(
seqlen_k, batch_size, device, mode="random"
)
# key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode='full')
def _gen_unused_masks(padding_mask, add_unused, max_seq_len, bs, device):
if add_unused:
another_mask = generate_random_padding_mask(max_seq_len, bs, device)
attn_mask = torch.logical_and(padding_mask, another_mask)
unused_mask = torch.logical_xor(
torch.logical_or(padding_mask, another_mask), attn_mask
)
else:
attn_mask = padding_mask
unused_mask = None
return attn_mask, unused_mask
query_padding_mask, query_unused_mask = _gen_unused_masks(
query_padding_mask, add_unused_qkv, seqlen_q, batch_size, q.device
)
key_padding_mask, key_unused_mask = _gen_unused_masks(
key_padding_mask, add_unused_qkv, seqlen_k, batch_size, k.device
)
(
q_unpad,
k_unpad,
v_unpad,
cu_seqlens_q,
cu_seqlens_k,
seqused_q,
seqused_k,
max_seqlen_q,
max_seqlen_k,
q,
k,
v,
output_pad_fn,
dq_pad_fn,
dk_pad_fn,
) = generate_qkv(
q,
k,
v,
query_padding_mask,
key_padding_mask,
kvpacked=False,
query_unused_mask=query_unused_mask,
key_unused_mask=key_unused_mask,
)
# print("cu_seqlens_q: ", cu_seqlens_q)
# print("cu_seqlens_k: ", cu_seqlens_k)
# print("q_unpad, shape: ", q_unpad.shape)
# print("k_unpad, shape: ", k_unpad.shape)
# print("v_unpad, shape: ", v_unpad.shape)
out_unpad, sm_lse = flash_attn_varlen_func(
q_unpad,
k_paged,
v_paged,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
causal=causal,
deterministic=deterministic,
block_table=block_table,
)
out = output_pad_fn(out_unpad)
out_unpaged_unpad, sm_unpaged_lse = flash_attn_varlen_func(
q_unpad,
k_unpad,
v_unpad,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
causal=causal,
deterministic=deterministic,
)
out_unpaged = output_pad_fn(out_unpaged_unpad)
dropout_mask = None
out_ref, attn_ref = attention_ref(
q,
k,
v,
query_padding_mask,
key_padding_mask,
causal=causal,
)
out_pt, attn_pt = attention_ref(
q,
k,
v,
query_padding_mask,
key_padding_mask,
causal=causal,
upcast=False,
reorder_ops=True,
)
# print(f"{k.stride()=}, {v.stride()=}, {k_paged.stride()=}, {v_paged.stride()=}, {block_table.stride()=}")
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
print(f"Output max diff paged vs varlen: {(out - out_unpaged).abs().max().item()}")
print(
f"Output mean diff paged vs varlen: {(out - out_unpaged).abs().mean().item()}"
)
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
# import fbvscode; fbvscode.set_trace()
assert (out - out_ref).abs().max().item() <= 2 * (
out_pt - out_ref
).abs().max().item()
@pytest.mark.parametrize("dtype", ([torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("local", [False])
# @pytest.mark.parametrize("local", [True])
@pytest.mark.parametrize(
"d", [128, 64]
) # [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [True])
@pytest.mark.parametrize(
"seqlen_q,seqlen_k",
[
(1, 239),
(3, 799),
(127, 512),
(127, 513),
(113, 203),
(128, 217),
(113, 211),
(108, 256),
(256, 512),
(1023, 1024),
],
)
# TODO: add smaller page sizes when https://github.com/Dao-AILab/flash-attention/pull/824 is merged
@pytest.mark.parametrize("paged_kv_block_size", [256, 512])
# @pytest.mark.parametrize("seqlen_q,seqlen_k", [(256, 128)])
def test_flash_attn_varlen_paged2(
seqlen_q, seqlen_k, swap_sq_sk, d, local, paged_kv_block_size, dtype
):
# Test ported from FlashAttention V2 test test_flash_attn_varlen_causal
def _generate_block_kvcache(
seqlen_k, paged_kv_block_size, batch_size, nheads_k, d, device, dtype
):
num_blocks = math.ceil(seqlen_k / paged_kv_block_size) * batch_size * 3
k_cache_paged = torch.randn(
num_blocks, paged_kv_block_size, nheads_k, d, device=device, dtype=dtype
)
v_cache_paged = torch.randn(
num_blocks, paged_kv_block_size, nheads_k, d, device=device, dtype=dtype
)
block_table = rearrange(
torch.randperm(num_blocks, dtype=torch.int32, device=device),
"(b nblocks) -> b nblocks",
b=batch_size,
)
k_cache = rearrange(
# pytorch 1.12 doesn't have indexing with int32
k_cache_paged[block_table.to(dtype=torch.long).flatten()],
"(b nblocks) block_size ... -> b (nblocks block_size) ...",
b=batch_size,
)[:, :seqlen_k]
v_cache = rearrange(
v_cache_paged[block_table.to(dtype=torch.long).flatten()],
"(b nblocks) block_size ... -> b (nblocks block_size) ...",
b=batch_size,
)[:, :seqlen_k]
return k_cache, v_cache, block_table, k_cache_paged, v_cache_paged, num_blocks
if (
max(seqlen_q, seqlen_k) >= 2048
and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
):
pytest.skip() # Reference implementation OOM
if swap_sq_sk:
seqlen_q, seqlen_k = seqlen_k, seqlen_q
device = "cuda"
causal = True
# set seed
torch.random.manual_seed(0)
batch_size = 8
nheads = 9
window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
q = torch.randn(
batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True
)
if paged_kv_block_size is None:
k = torch.randn(
batch_size,
seqlen_k,
nheads,
d,
device=device,
dtype=dtype,
requires_grad=True,
)
v = torch.randn(
batch_size,
seqlen_k,
nheads,
d,
device=device,
dtype=dtype,
requires_grad=True,
)
block_table = None
else:
k, v, block_table, k_cache_paged, v_cache_paged, num_blocks = (
_generate_block_kvcache(
seqlen_k, paged_kv_block_size, batch_size, nheads, d, device, dtype
)
)
query_padding_mask = generate_random_padding_mask(
seqlen_q, batch_size, device, mode="random"
)
key_padding_mask = generate_random_padding_mask(
seqlen_k, batch_size, device, mode="random"
)
def _gen_unused_masks(padding_mask, add_unused, max_seq_len, bs, device):
if add_unused:
another_mask = generate_random_padding_mask(max_seq_len, bs, device)
attn_mask = torch.logical_and(padding_mask, another_mask)
unused_mask = torch.logical_xor(
torch.logical_or(padding_mask, another_mask), attn_mask
)
else:
attn_mask = padding_mask
unused_mask = None
return attn_mask, unused_mask
query_padding_mask, query_unused_mask = _gen_unused_masks(
query_padding_mask, False, seqlen_q, batch_size, q.device
)
key_padding_mask, key_unused_mask = _gen_unused_masks(
key_padding_mask, False, seqlen_k, batch_size, k.device
)
(
q_unpad,
k_unpad,
v_unpad,
cu_seqlens_q,
cu_seqlens_k,
seqused_q,
seqused_k,
max_seqlen_q,
max_seqlen_k,
q,
k,
v,
output_pad_fn,
dq_pad_fn,
dk_pad_fn,
) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
out_unpad, sm_lse = flash_attn_varlen_func(
q_unpad,
k_unpad if paged_kv_block_size is None else k_cache_paged,
v_unpad if paged_kv_block_size is None else v_cache_paged,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
causal=causal,
block_table=block_table,
)
out = output_pad_fn(out_unpad)
out_ref, attn_ref = attention_ref(
q,
k,
v,
query_padding_mask,
key_padding_mask,
None,
0.0,
None,
causal=causal,
window_size=window_size,
)
out_pt, attn_pt = attention_ref(
q,
k,
v,
query_padding_mask,
key_padding_mask,
None,
0.0,
None,
causal=causal,
window_size=window_size,
upcast=False,
reorder_ops=True,
)
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
g = torch.randn_like(out)
do_o = (g.float() * out.float()).sum(-1)
test_backward = block_table is None
if test_backward:
(
dq_unpad,
dk_unpad,
dv_unpad,
) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
dq = dq_pad_fn(dq_unpad)
dk = dk_pad_fn(dk_unpad)
dv = dk_pad_fn(dv_unpad)
(
dq_ref,
dk_ref,
dv_ref,
) = torch.autograd.grad(out_ref, (q, k, v), g)
(
dq_pt,
dk_pt,
dv_pt,
) = torch.autograd.grad(out_pt, (q, k, v), g)
print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
assert (out - out_ref).abs().max().item() <= 2 * (
out_pt - out_ref
).abs().max().item() + 1e-5
if test_backward:
assert (dq - dq_ref).abs().max().item() <= 2 * (
dq_pt - dq_ref
).abs().max().item() + 1e-5
assert (dk - dk_ref).abs().max().item() <= 2 * (
dk_pt - dk_ref
).abs().max().item() + 1e-5
assert (dv - dv_ref).abs().max().item() <= 2 * (
dv_pt - dv_ref
).abs().max().item() + 1e-5
if __name__ == "__main__":
test_flash_attn_varlen_causal(512, 768, False, 128, False, 256, torch.bfloat16)