flash-attention/flash_attn/models/opt.py

107 lines
5.0 KiB
Python

# Copyright (c) 2023, Tri Dao.
import math
import re
from collections import OrderedDict
import torch
import torch.nn.functional as F
from transformers import GPT2Config, OPTConfig
def remap_state_dict_opt(state_dict, config):
def key_mapping_model(key):
key = re.sub(r'^model.decoder.', 'transformer.', key)
# The OPT-350m model uses '^decoder' instead of '^model.decoder'
key = re.sub(r'^decoder.', 'transformer.', key)
return key
state_dict = OrderedDict((key_mapping_model(k), v) for k, v in state_dict.items())
# Word embedding and position embedding
def key_mapping_emb(key):
key = re.sub(r'^transformer.embed_tokens.', 'transformer.embeddings.word_embeddings.', key)
# The OPT-350m model uses has project_in and project_out
key = re.sub(r'^transformer.project_in.', 'transformer.embeddings.project_in.', key)
key = re.sub(r'^transformer.project_out.', 'project_out.', key)
key = re.sub(r'^transformer.embed_positions.',
'transformer.embeddings.position_embeddings.', key)
return key
state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
# OPT uses the first 2 indices of pos_emb for padding tokens
pos_embeddings = state_dict.pop('transformer.embeddings.position_embeddings.weight')
state_dict['transformer.embeddings.position_embeddings.weight'] = pos_embeddings[2:]
word_embeddings = state_dict.pop('transformer.embeddings.word_embeddings.weight')
# It's possible that vocab_size is padded to be a multiple of 8, for example.
pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
state_dict['transformer.embeddings.word_embeddings.weight'] = F.pad(
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
)
state_dict['lm_head.weight'] = state_dict['transformer.embeddings.word_embeddings.weight']
# LayerNorm
def key_mapping_ln(key):
key = re.sub(r'^transformer.final_layer_norm.', r'transformer.ln_f.', key)
# The OPT-175B checkpoint calls this 'decoder.layer_norm' instead of 'decoder.final_layer_norm'
key = re.sub(r'^transformer.layer_norm.', r'transformer.ln_f.', key)
key = re.sub(r'^transformer.layers.(\d+).self_attn_layer_norm.',
r'transformer.layers.\1.norm1.', key)
key = re.sub(r'^transformer.layers.(\d+).final_layer_norm.',
r'transformer.layers.\1.norm2.', key)
return key
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
# MLP
def key_mapping_mlp(key):
return re.sub(r'^transformer.layers.(\d+).fc(1|2).',
r'transformer.layers.\1.mlp.fc\2.', key)
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
# Attention
for l in range(config.n_layer):
Wq = state_dict.pop(f'transformer.layers.{l}.self_attn.q_proj.weight')
Wk = state_dict.pop(f'transformer.layers.{l}.self_attn.k_proj.weight')
Wv = state_dict.pop(f'transformer.layers.{l}.self_attn.v_proj.weight')
bq = state_dict.pop(f'transformer.layers.{l}.self_attn.q_proj.bias')
bk = state_dict.pop(f'transformer.layers.{l}.self_attn.k_proj.bias')
bv = state_dict.pop(f'transformer.layers.{l}.self_attn.v_proj.bias')
state_dict[f'transformer.layers.{l}.mixer.Wqkv.weight'] = torch.cat(
[Wq, Wk, Wv], dim=0
)
state_dict[f'transformer.layers.{l}.mixer.Wqkv.bias'] = torch.cat(
[bq, bk, bv], dim=0
)
def key_mapping_attn(key):
return re.sub(r'^transformer.layers.(\d+).self_attn.out_proj.',
r'transformer.layers.\1.mixer.out_proj.', key)
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
return state_dict
def opt_config_to_gpt2_config(opt_config: OPTConfig) -> GPT2Config:
assert opt_config.layerdrop == 0.0
assert opt_config.layer_norm_elementwise_affine
word_embed_proj_dim = (None if opt_config.word_embed_proj_dim == opt_config.hidden_size
else opt_config.word_embed_proj_dim)
return GPT2Config(
vocab_size=opt_config.vocab_size,
n_positions=opt_config.max_position_embeddings,
n_embd=opt_config.hidden_size,
n_layer=opt_config.num_hidden_layers,
n_head=opt_config.num_attention_heads,
n_inner=opt_config.ffn_dim,
activation_function=opt_config.activation_function,
resid_pdrop=opt_config.dropout,
# HF's implementation of OPT doesn't seem to have embedding dropout
embd_pdrop=opt_config.dropout,
attn_pdrop=opt_config.attention_dropout,
initializer_range=opt_config.init_std,
bos_token_id=opt_config.bos_token_id,
eos_token_id=opt_config.eos_token_id,
# These are new arguments not in the original GPT2Config
prenorm=opt_config.do_layer_norm_before,
word_embed_proj_dim=word_embed_proj_dim
)