flash-attention/flash_attn/models/vit.py

268 lines
12 KiB
Python

# Copyright (c) 2022, Tri Dao.
# Inspired by / adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
import math
from functools import partial
from copy import deepcopy
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.init import trunc_normal_
from einops import rearrange
from timm.models.helpers import named_apply
from flash_attn.layers.patch_embed import PatchEmbed
from flash_attn.modules.mha import MHA
from flash_attn.modules.mlp import Mlp, FusedDenseGeluDense
from flash_attn.modules.block import Block
try:
from flash_attn.ops.layer_norm import dropout_add_layer_norm
except ImportError:
dropout_add_layer_norm = None
def create_mixer_cls(num_heads, qkv_bias, attn_drop, use_flash_attn, fused_bias_fc,
cross_attn=False):
mixer_cls = partial(MHA, num_heads=num_heads, cross_attn=cross_attn, bias=qkv_bias,
dropout=attn_drop, fused_bias_fc=fused_bias_fc,
use_flash_attn=use_flash_attn)
return mixer_cls
def create_mlp_cls(embed_dim, mlp_ratio, act_layer, fused_dense_gelu_dense):
inner_dim = int(embed_dim * mlp_ratio)
if not fused_dense_gelu_dense:
mlp_cls = partial(Mlp, hidden_features=inner_dim, activation=act_layer())
else:
mlp_cls = partial(FusedDenseGeluDense, hidden_features=inner_dim)
return mlp_cls
def create_block(embed_dim, num_heads, mlp_ratio, qkv_bias, drop_rate, attn_drop_rate, drop_path,
norm_layer, act_layer, use_flash_attn, fused_bias_fc, fused_dense_gelu_dense,
fused_dropout_add_ln, layer_idx=None, n_layer=None, last_layer_subset=False):
mixer_cls = create_mixer_cls(num_heads, qkv_bias, attn_drop_rate, use_flash_attn, fused_bias_fc,
cross_attn=(last_layer_subset and layer_idx == n_layer - 1))
mlp_cls = create_mlp_cls(embed_dim, mlp_ratio, act_layer, fused_dense_gelu_dense)
block = Block(embed_dim, mixer_cls, mlp_cls, norm_cls=norm_layer,
prenorm=True, resid_dropout=drop_rate, drop_path=drop_path,
fused_dropout_add_ln=fused_dropout_add_ln)
return block
class VisionTransformer(nn.Module):
""" Vision Transformer
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
- https://arxiv.org/abs/2010.11929
"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
global_pool='token',
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.,
qkv_bias=True,
init_values=None,
class_token=True,
no_embed_class=False,
pre_norm=False,
fc_norm=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
weight_init='',
embed_layer=PatchEmbed,
norm_layer=None,
act_layer=None,
use_flash_attn=False,
fused_bias_fc=False,
fused_dense_gelu_dense=False,
fused_dropout_add_ln=False,
):
"""
Args:
img_size (int, tuple): input image size
patch_size (int, tuple): patch size
in_chans (int): number of input channels
num_classes (int): number of classes for classification head
global_pool (str): type of global pooling for final sequence (default: 'token')
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
init_values: (float): layer-scale init values
class_token (bool): use class token
fc_norm (Optional[bool]): pre-fc norm after pool, set if global_pool == 'avg' if None (default: None)
drop_rate (float): dropout rate
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
weight_init (str): weight init scheme
embed_layer (nn.Module): patch embedding layer
norm_layer: (nn.Module): normalization layer
act_layer: (nn.Module): MLP activation layer
"""
super().__init__()
assert global_pool == 'token', 'Only support pooling with CLS token'
assert class_token
assert init_values is None, 'LayerScale is not supported yet'
assert weight_init == ''
assert fc_norm is None
# pre_norm seems redundant, as there's a LayerNorm right at the start of each block, idk
assert not pre_norm
use_fc_norm = global_pool == 'avg' if fc_norm is None else fc_norm
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
act_layer = act_layer or nn.GELU
self.num_classes = num_classes
self.global_pool = global_pool
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.num_prefix_tokens = 1 if class_token else 0
self.no_embed_class = no_embed_class
patch_embed_extra_kwargs = ({'fused_bias_fc': fused_bias_fc} if embed_layer is PatchEmbed
else {})
self.patch_embed = embed_layer(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
bias=not pre_norm, # disable bias if pre-norm is used (e.g. CLIP)
**patch_embed_extra_kwargs
)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None
embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens
self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * .02)
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
# We change the order of residual and layer norm:
# Instead of LN -> Attn / MLP -> Dropout -> Add, we do:
# Attn / MLP -> Dropout -> Add -> LN, returning both the residual branch (output of Add) and
# the main branch (output of LN). The model definition is unchanged, but the mapping of the
# nn.LayerNorm weights are changed.
# This is for performance reason: we can fuse dropout + add + layer_norm.
# self.norm_0 is the first layer norm in the model, while self.norm
# (in the pretrained weight) is the final layer norm.
self.norm_0 = norm_layer(embed_dim)
self.fused_dropout_add_ln = fused_dropout_add_ln
if self.fused_dropout_add_ln and dropout_add_layer_norm is None:
raise ImportError('dropout_add_layer_norm is not installed')
self.blocks = nn.ModuleList([create_block(
embed_dim, num_heads, mlp_ratio, qkv_bias, drop_rate, attn_drop_rate, drop_path=dpr[i],
norm_layer=norm_layer, act_layer=act_layer, use_flash_attn=use_flash_attn,
fused_bias_fc=fused_bias_fc, fused_dense_gelu_dense=fused_dense_gelu_dense,
fused_dropout_add_ln=fused_dropout_add_ln, layer_idx=i, n_layer=depth,
last_layer_subset=(global_pool == 'token')
) for i in range(depth)])
# Classifier Head
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
self.init_weights(weight_init)
def init_weights(self, mode=''):
assert mode == ''
trunc_normal_(self.pos_embed, std=.02)
if self.cls_token is not None:
nn.init.normal_(self.cls_token, std=1e-6)
named_apply(init_weights_vit_timm, self)
def _init_weights(self, m):
# this fn left here for compat with downstream users
init_weights_vit_timm(m)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def _pos_embed(self, x):
if self.no_embed_class:
# deit-3, updated JAX (big vision)
# position embedding does not overlap with class token, add then concat
x = x + self.pos_embed
if self.cls_token is not None:
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
else:
# original timm, JAX, and deit vit impl
# pos_embed has entry for class token, concat then add
if self.cls_token is not None:
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
x = x + self.pos_embed
return x
def forward_features(self, x, all_tokens=True):
"""
If all_tokens==False and self.global_pool == 'token', we only return the features for the
cls token.
"""
x = self.patch_embed(x)
x = self._pos_embed(x)
# TD [2022-10-15]: Force residual in fp32 in case of DeepSpeed
if not self.fused_dropout_add_ln:
residual = self.pos_drop(x).float()
hidden_states = self.norm_0(residual.to(dtype=self.norm_0.weight.dtype))
else:
hidden_states, residual = dropout_add_layer_norm(
x, None, self.norm_0.weight, self.norm_0.bias,
self.pos_drop.p if self.training else 0.0, self.norm_0.eps, prenorm=True,
residual_in_fp32=True
)
hidden_states = self.norm_0(residual.to(dtype=self.norm_0.weight.dtype))
if self.global_pool != 'token' or all_tokens:
for block in self.blocks:
hidden_states, residual = block(hidden_states, residual)
else:
for block in self.blocks[:-1]:
hidden_states, residual = block(hidden_states, residual)
# For the last layer, we only want the 1st token of the output. So we do cross-attention
# where the query is the 1st token and the key/value is the whole sequence.
hidden_states_1st = rearrange(hidden_states[:, 0], 'b d -> b 1 d')
residual_1st = rearrange(residual[:, 0], 'b d -> b 1 d')
hidden_states, _ = self.blocks[-1](hidden_states_1st, residual_1st,
mixer_kwargs={'x_kv': hidden_states})
return hidden_states
def forward_head(self, x, pre_logits: bool = False):
if self.global_pool:
x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
return x if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x, all_tokens=False)
x = self.forward_head(x)
return x
def init_weights_vit_timm(module: nn.Module, name: str = ''):
""" ViT weight initialization, original timm impl (for reproducibility) """
if isinstance(module, nn.Linear):
trunc_normal_(module.weight, std=.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif hasattr(module, 'init_weights'):
module.init_weights()
def vit_base_patch16_224(pretrained=False, **kwargs):
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
"""
assert not pretrained
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
model = VisionTransformer(**model_kwargs)
return model