147 lines
5.8 KiB
Python
147 lines
5.8 KiB
Python
# Copyright (c) 2022, Tri Dao.
|
|
""" Useful functions for writing test code. """
|
|
|
|
import torch
|
|
import torch.utils.benchmark as benchmark
|
|
|
|
|
|
def benchmark_forward(fn, *inputs, repeats=10, desc='', verbose=True, amp=False,
|
|
amp_dtype=torch.float16, **kwinputs):
|
|
""" Use Pytorch Benchmark on the forward pass of an arbitrary function. """
|
|
if verbose:
|
|
print(desc, '- Forward pass')
|
|
def fn_amp(*inputs, **kwinputs):
|
|
with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp):
|
|
fn(*inputs, **kwinputs)
|
|
for _ in range(repeats): # warmup
|
|
fn_amp(*inputs, **kwinputs)
|
|
t = benchmark.Timer(
|
|
stmt='fn_amp(*inputs, **kwinputs)',
|
|
globals={'fn_amp': fn_amp, 'inputs': inputs, 'kwinputs': kwinputs},
|
|
num_threads=torch.get_num_threads(),
|
|
)
|
|
m = t.timeit(repeats)
|
|
if verbose:
|
|
print(m)
|
|
return t, m
|
|
|
|
|
|
def benchmark_backward(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, amp=False,
|
|
amp_dtype=torch.float16, **kwinputs):
|
|
""" Use Pytorch Benchmark on the backward pass of an arbitrary function. """
|
|
if verbose:
|
|
print(desc, '- Backward pass')
|
|
with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp):
|
|
y = fn(*inputs, **kwinputs)
|
|
if type(y) is tuple:
|
|
y = y[0]
|
|
if grad is None:
|
|
grad = torch.randn_like(y)
|
|
else:
|
|
if grad.shape != y.shape:
|
|
raise RuntimeError('Grad shape does not match output shape')
|
|
for _ in range(repeats): # warmup
|
|
y.backward(grad, retain_graph=True)
|
|
t = benchmark.Timer(
|
|
stmt='y.backward(grad, retain_graph=True)',
|
|
globals={'y': y, 'grad': grad},
|
|
num_threads=torch.get_num_threads(),
|
|
)
|
|
m = t.timeit(repeats)
|
|
if verbose:
|
|
print(m)
|
|
return t, m
|
|
|
|
|
|
def benchmark_combined(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, amp=False,
|
|
amp_dtype=torch.float16, **kwinputs):
|
|
""" Use Pytorch Benchmark on the forward+backward pass of an arbitrary function. """
|
|
if verbose:
|
|
print(desc, '- Forward + Backward pass')
|
|
def f(grad, *inputs, **kwinputs):
|
|
with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp):
|
|
y = fn(*inputs, **kwinputs)
|
|
if type(y) is tuple:
|
|
y = y[0]
|
|
if grad is None:
|
|
grad = torch.randn_like(y)
|
|
else:
|
|
if grad.shape != y.shape:
|
|
raise RuntimeError('Grad shape does not match output shape')
|
|
y.backward(grad, retain_graph=True)
|
|
for _ in range(repeats): # warmup
|
|
f(grad, *inputs, **kwinputs)
|
|
t = benchmark.Timer(
|
|
stmt='f(grad, *inputs, **kwinputs)',
|
|
globals={'f': f, 'fn': fn, 'inputs': inputs, 'grad': grad, 'kwinputs': kwinputs},
|
|
num_threads=torch.get_num_threads(),
|
|
)
|
|
m = t.timeit(repeats)
|
|
if verbose:
|
|
print(m)
|
|
return t, m
|
|
|
|
|
|
def benchmark_all(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, amp=False,
|
|
amp_dtype=torch.float16, **kwinputs):
|
|
""" Use Pytorch Benchmark on the forward+backward pass of an arbitrary function. """
|
|
return (
|
|
benchmark_forward(fn, *inputs, repeats=repeats, desc=desc, verbose=verbose,
|
|
amp=amp, amp_dtype=amp_dtype, **kwinputs),
|
|
benchmark_backward(fn, *inputs, grad=grad, repeats=repeats, desc=desc, verbose=verbose,
|
|
amp=amp, amp_dtype=amp_dtype, **kwinputs),
|
|
benchmark_combined(fn, *inputs, grad=grad, repeats=repeats, desc=desc, verbose=verbose,
|
|
amp=amp, amp_dtype=amp_dtype, **kwinputs),
|
|
)
|
|
|
|
|
|
def pytorch_profiler(fn, *inputs, trace_filename=None, backward=False, amp=False,
|
|
amp_dtype=torch.float16, cpu=False, verbose=True, **kwinputs):
|
|
""" Wrap benchmark functions in Pytorch profiler to see CUDA information. """
|
|
if backward:
|
|
with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp):
|
|
g = torch.randn_like(fn(*inputs, **kwinputs))
|
|
for _ in range(30): # Warm up
|
|
with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp):
|
|
if backward:
|
|
for x in inputs:
|
|
if isinstance(x, torch.Tensor):
|
|
x.grad = None
|
|
# fn(*inputs, **kwinputs) if not backward else fn(*inputs, **kwinputs).backward(g)
|
|
out = fn(*inputs, **kwinputs)
|
|
# Backward should be done outside autocast
|
|
if backward:
|
|
out.backward(g)
|
|
activities = ([torch.profiler.ProfilerActivity.CPU] if cpu else []) + [torch.profiler.ProfilerActivity.CUDA]
|
|
with torch.profiler.profile(
|
|
activities=activities,
|
|
record_shapes=True,
|
|
# profile_memory=True,
|
|
with_stack=True,
|
|
) as prof:
|
|
with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp):
|
|
if backward:
|
|
for x in inputs:
|
|
if isinstance(x, torch.Tensor):
|
|
x.grad = None
|
|
out = fn(*inputs, **kwinputs)
|
|
if backward: out.backward(g)
|
|
if verbose:
|
|
# print(prof.key_averages().table(sort_by="self_cuda_time_total", row_limit=50))
|
|
print(prof.key_averages().table(row_limit=50))
|
|
if trace_filename is not None:
|
|
prof.export_chrome_trace(trace_filename)
|
|
|
|
|
|
def benchmark_memory(fn, *inputs, desc='', verbose=True, **kwinputs):
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.reset_peak_memory_stats()
|
|
torch.cuda.synchronize()
|
|
fn(*inputs, **kwinputs)
|
|
torch.cuda.synchronize()
|
|
mem = torch.cuda.max_memory_allocated() / ((2 ** 20) * 1000)
|
|
if verbose:
|
|
print(f'{desc} max memory: {mem}GB')
|
|
torch.cuda.empty_cache()
|
|
return mem
|