832 lines
46 KiB
C++
832 lines
46 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2024, Tri Dao.
|
|
******************************************************************************/
|
|
|
|
#pragma once
|
|
|
|
#include <cute/algorithm/copy.hpp>
|
|
|
|
#include <cutlass/cutlass.h>
|
|
#include <cutlass/array.h>
|
|
#include <cutlass/numeric_types.h>
|
|
|
|
#include "block_info.h"
|
|
#include "kernel_traits.h"
|
|
#include "utils.h"
|
|
#include "softmax.h"
|
|
#include "mask.h"
|
|
#include "dropout.h"
|
|
|
|
#include "alibi.h"
|
|
|
|
namespace flash {
|
|
|
|
using namespace cute;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <int MMA_N,
|
|
class... Args,
|
|
class TiledMMA>
|
|
CUTE_HOST_DEVICE
|
|
auto
|
|
make_tiled_copy_B_warpcontiguousN(Copy_Atom<Args...> const& copy_atom,
|
|
TiledMMA const& tiled_mma) {
|
|
using TileShape_MNK = typename TiledMMA::TiledShape_MNK;
|
|
using AtomShape_MNK = typename TiledMMA::AtomShape_MNK;
|
|
constexpr int AtomShape_N = decltype(size<1>(AtomShape_MNK{}))::value;
|
|
// Divide by 2 because right now we always use 2 for the ValLayout
|
|
constexpr int kNWarpsN = decltype(size<1>(TileShape_MNK{}))::value / AtomShape_N / 2;
|
|
constexpr int MMAStride_N = MMA_N * AtomShape_N * 2;
|
|
// This gives the correct layout, idk why.
|
|
// auto t = make_tile(Layout<Shape<Shape<_8, _2>, _2>,
|
|
// Stride<Stride<_1, _64>, _8> >{},
|
|
// auto t = make_tile(Layout<Shape<_8, _2, _2>,
|
|
// Stride<_1, _64, _8> >{},
|
|
auto t = make_tile(Layout<Shape<Int<AtomShape_N>, Int<kNWarpsN>, _2>, // (8, 2, 2) or (8, 4, 2)
|
|
Stride<_1, Int<MMAStride_N>, _8> >{}, // (1, 64, 8) or (1, 32, 8)
|
|
make_layout(size<2>(TileShape_MNK{})));
|
|
// if (cute::thread0()) {printf("make_tiled_copy_B_warpcontiguousN "); print(t); printf("\n"); }
|
|
return make_tiled_copy_impl(copy_atom, tiled_mma.get_layoutB_TV(), t);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <int MMA_N,
|
|
class... Args,
|
|
class TiledMMA>
|
|
CUTE_HOST_DEVICE
|
|
auto
|
|
make_tiled_copy_C_warpcontiguousN(Copy_Atom<Args...> const& copy_atom,
|
|
TiledMMA const& tiled_mma) {
|
|
using TileShape_MNK = typename TiledMMA::TiledShape_MNK;
|
|
using AtomShape_MNK = typename TiledMMA::AtomShape_MNK;
|
|
constexpr int AtomShape_N = decltype(size<1>(AtomShape_MNK{}))::value;
|
|
// Divide by 2 because right now we always use 2 for the ValLayout
|
|
constexpr int kNWarpsN = decltype(size<1>(TileShape_MNK{}))::value / AtomShape_N / 2;
|
|
constexpr int MMAStride_N = MMA_N * AtomShape_N * 2;
|
|
auto t = make_tile(make_layout(size<0>(TileShape_MNK{})),
|
|
Layout<Shape<Int<AtomShape_N>, Int<kNWarpsN>, _2>, // (8, 2, 2) or (8, 4, 2)
|
|
Stride<_1, Int<MMAStride_N>, _8> >{}); // (1, 64, 8) or (1, 32, 8)
|
|
// if (cute::thread0()) {printf("make_tiled_copy_C_warpcontiguousN "); print(t); printf("\n"); }
|
|
return make_tiled_copy_impl(copy_atom, tiled_mma.get_layoutC_TV(), t);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_first, bool Is_last, bool Seq_parallel=false, typename Params>
|
|
inline __device__ void compute_dq_dk_dv_1colblock(const Params ¶ms, const int bidb, const int bidh, const int n_block) {
|
|
|
|
using Element = typename Kernel_traits::Element;
|
|
using ElementAccum = typename Kernel_traits::ElementAccum;
|
|
using index_t = typename Kernel_traits::index_t;
|
|
|
|
// Shared memory.
|
|
extern __shared__ char smem_[];
|
|
|
|
// The thread index.
|
|
const int tidx = threadIdx.x;
|
|
|
|
constexpr int kBlockM = Kernel_traits::kBlockM;
|
|
constexpr int kBlockN = Kernel_traits::kBlockN;
|
|
constexpr int kHeadDim = Kernel_traits::kHeadDim;
|
|
// constexpr int kNWarps = Kernel_traits::kNWarps;
|
|
constexpr int MMA_N_SdP = kBlockN / decltype(size<1>(typename Kernel_traits::TiledMmaSdP::TiledShape_MNK{}))::value;
|
|
constexpr int AtomLayoutMS = Kernel_traits::AtomLayoutMSdP;
|
|
constexpr bool Double_buffer = !Kernel_traits::No_double_buffer;
|
|
|
|
const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
|
|
if (n_block * kBlockN >= binfo.actual_seqlen_k) return;
|
|
|
|
int m_block_max = cute::ceil_div(binfo.actual_seqlen_q, kBlockM);
|
|
if (Is_local) {
|
|
m_block_max = std::min(m_block_max, cute::ceil_div((n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k + params.window_size_left, kBlockM));
|
|
}
|
|
|
|
const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)
|
|
+ (m_block_max - 1) * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
|
|
const index_t row_offset_k = binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)
|
|
+ n_block * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride;
|
|
const index_t row_offset_v = binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)
|
|
+ n_block * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;
|
|
const index_t row_offset_do = binfo.q_offset(params.do_batch_stride, params.do_row_stride, bidb)
|
|
+ (m_block_max - 1) * kBlockM * params.do_row_stride + bidh * params.do_head_stride;
|
|
const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
|
|
+ (m_block_max - 1) * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
|
|
const index_t row_offset_dq = binfo.q_offset(params.dq_batch_stride, params.dq_row_stride, bidb)
|
|
+ (m_block_max - 1) * kBlockM * params.dq_row_stride + bidh * params.dq_head_stride;
|
|
const index_t row_offset_dq_accum = binfo.q_offset(params.seqlen_q_rounded * params.h * params.d_rounded, params.h * params.d_rounded, bidb)
|
|
+ ((m_block_max - 1) * kBlockM + (params.cu_seqlens_q == nullptr ? 0 : 128 * bidb)) * params.h * params.d_rounded + bidh * params.d_rounded
|
|
// If deterministic, each thread block will do atomicAdd to a different dQ_accum buffer.
|
|
+ (!params.deterministic ? 0 : blockIdx.x * params.dq_accum_split_stride);
|
|
const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q
|
|
+ (m_block_max - 1) * kBlockM;
|
|
const index_t row_offset_dpsum = (bidb * params.h + bidh) * params.seqlen_q_rounded
|
|
+ (m_block_max - 1) * kBlockM;
|
|
|
|
Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
|
|
Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
|
make_stride(params.q_row_stride, _1{}));
|
|
Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
|
|
Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
|
make_stride(params.k_row_stride, _1{}));
|
|
Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
|
|
Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
|
make_stride(params.v_row_stride, _1{}));
|
|
Tensor gdO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.do_ptr) + row_offset_do),
|
|
Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
|
make_stride(params.do_row_stride, _1{}));
|
|
Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
|
|
Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
|
make_stride(params.o_row_stride, _1{}));
|
|
Tensor gdQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dq_ptr) + row_offset_dq),
|
|
Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
|
make_stride(params.dq_row_stride, _1{}));
|
|
Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dq_accum_ptr) + row_offset_dq_accum),
|
|
Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
|
make_stride(params.h * params.d_rounded, _1{}));
|
|
Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
|
|
Shape<Int<kBlockM>>{}, Stride<_1>{});
|
|
Tensor gdPsum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dsoftmax_sum) + row_offset_dpsum),
|
|
Shape<Int<kBlockM>>{}, Stride<_1>{});
|
|
|
|
Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
|
|
typename Kernel_traits::SmemLayoutQdO{});
|
|
Tensor sQt = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
|
|
Tensor sQtNoSwizzle = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
|
|
// Double buffer for sQ
|
|
Tensor sdO = make_tensor(sQ.data() + (Double_buffer ? 2 : 1) * size(sQ), typename Kernel_traits::SmemLayoutQdO{});
|
|
Tensor sdOt = make_tensor(sdO.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
|
|
Tensor sdOtransposedNoSwizzle = make_tensor(sdO.data(),
|
|
typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
|
|
Tensor sK = make_tensor(sdO.data() + size(sdO), typename Kernel_traits::SmemLayoutKV{});
|
|
Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
|
|
Tensor sKt = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposed{});
|
|
Tensor sKtNoSwizzle = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposedNoSwizzle{});
|
|
Tensor sdS = make_tensor(!Kernel_traits::Is_V_in_regs ? sV.data() + size(sV) : sK.data() + size(sK),
|
|
typename Kernel_traits::SmemLayoutPdS{});
|
|
Tensor sdSt = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
|
|
Tensor sdStNoSwizzle = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
|
|
Tensor sP = make_tensor(sdS.data() + size(sdS), typename Kernel_traits::SmemLayoutPdS{});
|
|
Tensor sPt = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
|
|
Tensor sPtNoSwizzle = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
|
|
// sP and sdQ share the same memory so be careful
|
|
Tensor sdQ = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutdQ{});
|
|
|
|
typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
|
|
auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
|
|
using GmemTiledCopydO = std::conditional_t<
|
|
Is_first,
|
|
typename Kernel_traits::GmemTiledCopydO,
|
|
typename Kernel_traits::GmemTiledCopyQKV
|
|
>;
|
|
GmemTiledCopydO gmem_tiled_copy_dO;
|
|
auto gmem_thr_copy_dO = gmem_tiled_copy_dO.get_thread_slice(tidx);
|
|
typename Kernel_traits::GmemTiledCopydQ gmem_tiled_copy_dQ;
|
|
auto gmem_thr_copy_dQ = gmem_tiled_copy_dQ.get_thread_slice(tidx);
|
|
using GmemLayoutAtomdQaccum = std::conditional_t<
|
|
!Seq_parallel,
|
|
typename Kernel_traits::GmemTiledCopydQaccum,
|
|
typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd
|
|
>;
|
|
GmemLayoutAtomdQaccum gmem_tiled_copy_dQaccum;
|
|
auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(tidx);
|
|
|
|
Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
|
|
Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
|
|
Tensor tdOgdO = gmem_thr_copy_dO.partition_S(gdO);
|
|
Tensor tdOsdO = gmem_thr_copy_dO.partition_D(sdO);
|
|
Tensor tdOgO = gmem_thr_copy_dO.partition_S(gO);
|
|
Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK); // (KCPY, KCPY_N, KCPY_K)
|
|
Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
|
|
Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV); // (VCPY, VCPY_N, VCPY_K)
|
|
Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
|
|
Tensor tdQsdQ = gmem_thr_copy_dQ.partition_S(sdQ); // ((Atom,AtomNum),ATOM_M,ATOM_N)
|
|
Tensor tdQgdQ = gmem_thr_copy_dQ.partition_D(gdQ);
|
|
Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_D(gdQaccum);
|
|
// if (cute::thread0()) { print(tdQgdQaccum.layout()); printf("\n"); }
|
|
// __syncthreads();
|
|
// if (blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && tidx < 64) {
|
|
// printf("tidx = %d, tdQgdQaccum = 0x%p\n", tidx, tdQgdQaccum.data());
|
|
// }
|
|
|
|
typename Kernel_traits::TiledMmaSdP tiled_mma_sdp;
|
|
auto thr_mma_sdp = tiled_mma_sdp.get_thread_slice(tidx);
|
|
Tensor tSrQ = thr_mma_sdp.partition_fragment_A(sQ); // (MMA,MMA_N,MMA_K)
|
|
Tensor tSrK = thr_mma_sdp.partition_fragment_B(sK); // (MMA,MMA_N,MMA_K)
|
|
Tensor tdPrdO = thr_mma_sdp.partition_fragment_A(sdO); // (MMA,MMA_N,MMA_K)
|
|
Tensor tdPrV = thr_mma_sdp.partition_fragment_B(sV); // (MMA,MMA_N,MMA_K)
|
|
|
|
typename Kernel_traits::TiledMmadKV tiled_mma_dkv;
|
|
auto thr_mma_dkv = tiled_mma_dkv.get_thread_slice(tidx);
|
|
Tensor tdKrdSt = thr_mma_dkv.partition_fragment_A(sdStNoSwizzle); // (MMA, MMA_N, MMA_N)
|
|
Tensor tdKrQt = thr_mma_dkv.partition_fragment_B(sQtNoSwizzle); // (MMA, MMA_K, MMA_N)
|
|
Tensor tdVrPt = thr_mma_dkv.partition_fragment_A(sPtNoSwizzle); // (MMA, MMA_N, MMA_N)
|
|
Tensor tdVrdO = thr_mma_dkv.partition_fragment_B(sdOtransposedNoSwizzle); // (MMA, MMA_K, MMA_N)
|
|
|
|
typename Kernel_traits::TiledMmadQ tiled_mma_dq;
|
|
auto thr_mma_dq = tiled_mma_dq.get_thread_slice(tidx);
|
|
Tensor tdQrdS = thr_mma_dq.partition_fragment_A(sdS); // (MMA, MMA_N, MMA_N)
|
|
Tensor tdQrKt = thr_mma_dq.partition_fragment_B(sKtNoSwizzle); // (MMA, MMA_K, MMA_N)
|
|
|
|
Tensor acc_dk = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{}); // MMA, MMA_N, MMA_K
|
|
Tensor acc_dv = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{}); // MMA, MMA_N, MMA_K
|
|
|
|
//
|
|
// Copy Atom retiling
|
|
//
|
|
|
|
auto smem_tiled_copy_QdO = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp);
|
|
auto smem_thr_copy_QdO = smem_tiled_copy_QdO.get_thread_slice(tidx);
|
|
Tensor tSsQ = smem_thr_copy_QdO.partition_S(sQ);
|
|
Tensor tdPsdO = smem_thr_copy_QdO.partition_S(sdO);
|
|
|
|
// auto smem_thr_copy_KV = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp).get_thread_slice(tidx);
|
|
auto smem_tiled_copy_KV = make_tiled_copy_B_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp);
|
|
auto smem_thr_copy_KV = smem_tiled_copy_KV.get_thread_slice(tidx);
|
|
Tensor tSsK = smem_thr_copy_KV.partition_S(sK);
|
|
// if (cute::thread(0, 0) && n_block == 0) { printf("sK layout: "); print(sK.layout()); printf("\n"); }
|
|
// if (cute::thread(0, 0) && n_block == 0) { print(tSsK.layout()); printf("\n"); }
|
|
Tensor tdPsV = smem_thr_copy_KV.partition_S(sV);
|
|
|
|
// Partition sP and sdS to match the accumulator partitioning
|
|
// This has to be tiled_mma_sdp, not tiled_mma_dkv
|
|
// auto smem_thr_copy_PdS = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomPdS{}, tiled_mma_sdp).get_thread_slice(tidx);
|
|
auto smem_tiled_copy_PdS = make_tiled_copy_C_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtomPdS{}, tiled_mma_sdp);
|
|
auto smem_thr_copy_PdS = smem_tiled_copy_PdS.get_thread_slice(tidx);
|
|
Tensor tPsP = smem_thr_copy_PdS.partition_D(sP); // ((Atom,AtomNum),PIPE_M,PIPE_N)
|
|
// if (cute::thread(0, 0) && n_block == 0) { printf("sP layout: "); print(sP.layout()); printf("\n"); }
|
|
// if (cute::thread(0, 0) && n_block == 0) { print(tPsP.layout()); printf("\n"); }
|
|
// if (n_block == 0 && blockIdx.x == 0 && blockIdx.y == 0 && tidx < 64) {
|
|
// printf("tidx=%d, tPsP = 0x%p\n", tidx, tPsP.data());
|
|
// }
|
|
Tensor tdSsdS = smem_thr_copy_PdS.partition_D(sdS); // ((Atom,AtomNum),PIPE_M,PIPE_N)
|
|
|
|
auto smem_tiled_copy_PdSt = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv);
|
|
auto smem_thr_copy_PdSt = smem_tiled_copy_PdSt.get_thread_slice(tidx);
|
|
Tensor tdVsPt = smem_thr_copy_PdSt.partition_S(sPt);
|
|
Tensor tdKsdSt = smem_thr_copy_PdSt.partition_S(sdSt);
|
|
|
|
auto smem_tiled_copy_QdOt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv);
|
|
auto smem_thr_copy_QdOt = smem_tiled_copy_QdOt.get_thread_slice(tidx);
|
|
Tensor tdVsdOt = smem_thr_copy_QdOt.partition_S(sdOt);
|
|
Tensor tdKsQt = smem_thr_copy_QdOt.partition_S(sQt);
|
|
|
|
auto smem_tiled_copy_dS = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_dq);
|
|
auto smem_thr_copy_dS = smem_tiled_copy_dS.get_thread_slice(tidx);
|
|
Tensor tdQsdS = smem_thr_copy_dS.partition_S(sdS);
|
|
|
|
auto smem_tiled_copy_Kt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dq);
|
|
auto smem_thr_copy_Kt = smem_tiled_copy_Kt.get_thread_slice(tidx);
|
|
Tensor tdQsKt = smem_thr_copy_Kt.partition_S(sKt);
|
|
|
|
auto smem_tiled_copy_dQ = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdQ{}, tiled_mma_dq);
|
|
auto smem_thr_copy_dQ = smem_tiled_copy_dQ.get_thread_slice(tidx);
|
|
Tensor taccdQsdQ = smem_thr_copy_dQ.partition_D(sdQ); // ((Atom,AtomNum),PIPE_M,PIPE_N)
|
|
|
|
//
|
|
// PREDICATES
|
|
//
|
|
|
|
Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
|
|
Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK))); // (BLK_N,BLK_K) -> (blk_n,blk_k)
|
|
Tensor tQcQ = gmem_thr_copy_QKV.partition_D(cQ);
|
|
Tensor tKVcKV = gmem_thr_copy_QKV.partition_D(cKV);
|
|
|
|
// Allocate predicate tensors for k
|
|
Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
|
|
Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));
|
|
|
|
// Set predicates for k bounds
|
|
if (!Is_even_K) {
|
|
#pragma unroll
|
|
for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
|
|
#pragma unroll
|
|
for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
|
|
}
|
|
|
|
// Prologue
|
|
|
|
// We'll advance gdQ and gdQaccum before the 1st read/write.
|
|
tdQgdQ.data() = tdQgdQ.data() + kBlockM * params.dq_row_stride;
|
|
tdQgdQaccum.data() = tdQgdQaccum.data() + kBlockM * params.h * params.d_rounded;
|
|
|
|
int m_block = m_block_max - 1;
|
|
int m_block_min = (!Is_causal && !Is_local)
|
|
? 0
|
|
: std::max(0, (n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k - params.window_size_right) / kBlockM);
|
|
// If not local, we're guaranteed that m_block_min <= m_block:
|
|
// We checked earlier that n_block * kBlockN < actual_seqlen_k, so in the causal case,
|
|
// n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k < actual_seqlen_q.
|
|
// So m_block_min <= (actual_seqlen_q - 1) / kBlockM.
|
|
// Recall that m_block_max = cute::ceil_div(binfo.actual_seqlen_q, kBlockM) = (actual_seqlen_q + kBlockM - 1) / kBlockM.
|
|
// So m_block_m - 1 = (actual_seqlen_q - 1) / kBlockM.
|
|
// We conclude that m_block_min <= m_block, so we will always have at least 1 iteration of the for loop.
|
|
// However, if local, then this possible to have some blocks of K & V not attending to any query.
|
|
// We might need to exit early and write 0 to dK and dV for those blocks.
|
|
// Otherwise we get wrong result for the case where we don't enter the for loop.
|
|
// And we might read OOB elements from gQ and gdO.
|
|
// This also covers the case where actual_seqlen_q == 0
|
|
if ((Is_local || !Is_even_MN) && m_block < m_block_min) {
|
|
const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
|
|
+ n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
|
|
const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
|
|
+ n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
|
|
Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
|
|
Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
|
make_stride(params.dk_row_stride, _1{}));
|
|
Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
|
|
Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
|
make_stride(params.dv_row_stride, _1{}));
|
|
typename Kernel_traits::GmemTiledCopydKV gmem_tiled_copy_dKV;
|
|
auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx);
|
|
Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
|
|
Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);
|
|
Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
|
|
Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
|
|
clear(tdKrdK);
|
|
clear(tdVrdV);
|
|
Tensor cdKV = make_identity_tensor(make_shape(size<0>(gdK), size<1>(gdK))); // (BLK_N,BLK_K) -> (blk_n,blk_k)
|
|
Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
|
|
Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
|
|
#pragma unroll
|
|
for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
|
|
// Clear_OOB_K must be false since we don't want to write zeros to gmem
|
|
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
|
|
gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
|
|
);
|
|
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
|
|
gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
|
|
);
|
|
return;
|
|
}
|
|
|
|
if (Double_buffer && m_block % 2 == 1) { // Double buffer for sQ
|
|
tQsQ.data() = tQsQ.data() + size(sQ);
|
|
tSsQ.data() = tSsQ.data() + size(sQ);
|
|
tdKsQt.data() = tdKsQt.data() + size(sQ);
|
|
}
|
|
|
|
if ((!Is_first && !Seq_parallel) || params.deterministic) { __syncthreads(); }
|
|
|
|
if (Kernel_traits::Is_V_in_regs) {
|
|
// Clear the smem tiles to account for predicated off loads
|
|
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
|
|
gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
|
|
);
|
|
flash::cp_async_fence();
|
|
}
|
|
|
|
Tensor tdOrdO = make_fragment_like(tdOgdO);
|
|
Tensor tdOrO = make_fragment_like(tdOgO);
|
|
if (!Is_first) {
|
|
// Clear the smem tiles to account for predicated off loads
|
|
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
|
|
gmem_tiled_copy_dO, tdOgdO, tdOsdO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
|
|
);
|
|
} else {
|
|
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
|
|
gmem_tiled_copy_dO, tdOgdO, tdOrdO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
|
|
);
|
|
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
|
|
gmem_tiled_copy_dO, tdOgO, tdOrO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
|
|
);
|
|
}
|
|
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
|
|
gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
|
|
);
|
|
|
|
Tensor caccS = make_identity_tensor(Shape<Int<kBlockM>, Int<kBlockN>>{}); // (BLK_M,BLK_N) -> (blk_m,blk_n)
|
|
Tensor taccScS = thr_mma_sdp.partition_C(caccS); // (MMA,MMA_N,MMA_N)
|
|
static_assert(decltype(size<0>(taccScS))::value == 4);
|
|
// Convert to ((2, 2), MMA_N, MMA_N) then take only the row indices.
|
|
Tensor taccScS_row = logical_divide(taccScS, Shape<_2>{})(make_coord(0, _), _, 0);
|
|
Tensor lse = make_tensor<ElementAccum>(Shape<Int<decltype(size(taccScS_row))::value>>{});
|
|
#pragma unroll
|
|
for (int mi = 0; mi < size(lse); ++mi) {
|
|
const int row = get<0>(taccScS_row(mi));
|
|
lse(mi) = Is_even_MN || row < binfo.actual_seqlen_q - m_block * kBlockM ? gLSE(row) : INFINITY;
|
|
}
|
|
// We want LSE = inf if the row is OOB. In that case Q would be zero, K would be zero,
|
|
// and scores would be zero. With LSE = 0, probs will be all 1's, and when we multiply
|
|
// with V (which would be zero), we're fine. However, with ALiBi, we might modify these
|
|
// scores, and probs can become NaN. Instead if we set LSE = inf for OOB rows, probs are always 0.
|
|
|
|
// Tensor tKrK = make_fragment_like(tKsK);
|
|
// // cute::copy(gmem_tiled_copy_QKV, tKgK(_, _, _, 0), tKrK);
|
|
// cute::copy(gmem_tiled_copy_QKV, tKgK, tKrK);
|
|
// // if (cute::thread(1, 0)) { print(tKrK); }
|
|
|
|
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
|
|
gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
|
|
);
|
|
if (!Kernel_traits::Is_V_in_regs) {
|
|
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
|
|
gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
|
|
);
|
|
}
|
|
flash::cp_async_fence();
|
|
|
|
// if (cute::thread0()) { print(tdOgdO.layout()); printf("\n"); print(tdOrdO); print(tdOrO); }
|
|
if (Is_first) {
|
|
cute::copy(tdOrdO, tdOsdO);
|
|
dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, gdPsum,
|
|
Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
|
|
}
|
|
|
|
if (Kernel_traits::Is_V_in_regs) {
|
|
cute::cp_async_wait<1>();
|
|
__syncthreads();
|
|
Tensor tdPrV_copy_view = smem_thr_copy_KV.retile_D(tdPrV);
|
|
CUTE_STATIC_ASSERT_V(size<1>(tdPsV) == size<1>(tdPrV_copy_view)); // M
|
|
cute::copy(smem_tiled_copy_KV, tdPsV, tdPrV_copy_view);
|
|
}
|
|
|
|
flash::Dropout dropout(params.rng_state[0], params.rng_state[1], params.p_dropout_in_uint8_t,
|
|
bidb, bidh, tidx, params.h);
|
|
|
|
clear(acc_dv);
|
|
clear(acc_dk);
|
|
|
|
float alibi_slope = !Has_alibi ? 0.0f : reinterpret_cast<float *>(params.alibi_slopes_ptr)[bidb * params.alibi_slopes_batch_stride + bidh] / params.scale_softmax;
|
|
|
|
for (; m_block >= m_block_min; --m_block) {
|
|
Tensor acc_s = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{}); // (MMA=4, MMA_N, MMA_N)
|
|
clear(acc_s);
|
|
cute::cp_async_wait<0>();
|
|
__syncthreads();
|
|
|
|
Tensor dP_sum = make_fragment_like(lse);
|
|
#pragma unroll
|
|
for (int mi = 0; mi < size(lse); ++mi) { dP_sum(mi) = gdPsum(get<0>(taccScS_row(mi))); }
|
|
|
|
// if (cute::thread0()) { print(sK); }
|
|
// Tensor tSrK_copy_view = smem_thr_copy_KV.retile_D(tSrK);
|
|
// #pragma unroll
|
|
// for (int k = 0; k < size<2>(tSrK_copy_view); ++k) {
|
|
// cute::copy(smem_tiled_copy_KV, tSsK(_, _, k), tSrK_copy_view(_, _, k));
|
|
// }
|
|
// if (cute::thread0()) { print(tSrK); }
|
|
flash::gemm(acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma_sdp,
|
|
smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV);
|
|
|
|
// Reshape acc_s from (MMA=4, MMA_N, MMA_N) to (col=(2, MMA_N), row=(2, MMA_N))
|
|
Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
|
|
// if (cute::thread(32, 0)) { print(scores); }
|
|
|
|
if (Has_alibi) {
|
|
flash::apply_alibi<Is_causal>(
|
|
scores,
|
|
n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
|
|
binfo.actual_seqlen_k,
|
|
m_block * kBlockM + get<0>(taccScS_row(0)),
|
|
binfo.actual_seqlen_q,
|
|
AtomLayoutMS * 16,
|
|
alibi_slope
|
|
);
|
|
}
|
|
|
|
// TD [2023-07-29]: I was thinking that we don't need to mask out the elements beyond
|
|
// actual_seqlen_k, because acc_s would be some finite value for those indices.
|
|
// In the end when we multiply with K to get dQ, the corresponding values of K would be 0,
|
|
// so the result would still be correct.
|
|
// However, it's possible that the values in acc_s are so large that they overflow
|
|
// when we multiply with dP and convert to fp16, resulting in Inf in dS and NaNs in dQ.
|
|
// So we need to mask out the elements beyond actual_seqlen_k.
|
|
if (!Is_causal && !Is_local) {
|
|
if (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k) {
|
|
flash::apply_mask(scores, binfo.actual_seqlen_k,
|
|
n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16);
|
|
}
|
|
} else if (Is_causal) {
|
|
// Putting this causal masking right after acc_s is *much* slower for some reason.
|
|
// TD [2023-08-16]: We need the 2nd condition because if seqlen_q is long and seqlen_k is short
|
|
// (e.g., 256 and 2), the 2nd block of seqlen_q (from 128 to 255), we're not doing causal masking.
|
|
// But we still want to mask out elements beyond actual_seqlen_k.
|
|
if (m_block * kBlockM < (n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k
|
|
|| (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k)) {
|
|
flash::apply_mask_causal(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
|
|
binfo.actual_seqlen_k, m_block * kBlockM + get<0>(taccScS_row(0)),
|
|
binfo.actual_seqlen_q,
|
|
// binfo.actual_seqlen_k, m_block * kBlockM + (tidx / 32) % AtomLayoutMS * 16 + (tidx % 32) / 4,
|
|
AtomLayoutMS * 16);
|
|
}
|
|
} else if (Is_local) {
|
|
if (m_block * kBlockM < (n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k - params.window_size_right
|
|
|| (m_block + 1) * kBlockM >= n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k + params.window_size_left
|
|
|| (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k)) {
|
|
flash::apply_mask_local(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
|
|
binfo.actual_seqlen_k, m_block * kBlockM + get<0>(taccScS_row(0)),
|
|
binfo.actual_seqlen_q, AtomLayoutMS * 16,
|
|
params.window_size_left, params.window_size_right);
|
|
}
|
|
|
|
}
|
|
|
|
// if (cute::thread(32, 0)) { print(scores); }
|
|
// Compute the exponential value.
|
|
flash::scale_apply_exp2</*scale_max=*/false>(scores, lse, params.scale_softmax_log2);
|
|
if (Is_dropout) {
|
|
int warp_id = tidx / 32;
|
|
int block_row_idx = m_block * (kBlockM / 16) + warp_id % AtomLayoutMS;
|
|
// Need col to be multiples of 32, since we're doing dropout with block of 16 x 32
|
|
static_assert(MMA_N_SdP % 2 == 0);
|
|
int block_col_idx = n_block * (kBlockN / 32) + (warp_id / AtomLayoutMS) * (MMA_N_SdP / 2);
|
|
dropout.template apply_dropout</*encode_dropout_in_sign_bit=*/true>(
|
|
scores, block_row_idx, block_col_idx, AtomLayoutMS
|
|
);
|
|
}
|
|
// Convert scores from fp32 to fp16/bf16
|
|
Tensor rP = !Is_dropout
|
|
? flash::convert_type<Element>(scores)
|
|
: flash::convert_type_relu<Element>(scores);
|
|
// Reshape rP from (nrow=(2, MMA_N), ncol=(2, MMA_N)) to ((2, 2, 2), MMA_N, MMA_N / 2)
|
|
// if using m16n8k16 or ((2, 2, 1), MMA_N, MMA_N) if using m16n8k8.
|
|
Tensor tPrP = make_tensor(rP.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMmaSdP>(rP.layout()));
|
|
Tensor tPaP = smem_thr_copy_PdS.retile_S(tPrP); // ((Atom,AtomNum), MMA_N, MMA_N)
|
|
cute::copy(smem_tiled_copy_PdS, tPaP, tPsP);
|
|
// if (cute::thread0()) { print(tPaP); }
|
|
// __syncthreads();
|
|
// if (cute::thread0()) { print(sP); }
|
|
|
|
Tensor acc_dp = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{}); // (MMA=4, MMA_N, MMA_N)
|
|
CUTE_STATIC_ASSERT_V(size<0>(acc_dp) == size<0>(acc_s)); // MMA
|
|
CUTE_STATIC_ASSERT_V(size<1>(acc_dp) == size<1>(acc_s)); // MMA
|
|
CUTE_STATIC_ASSERT_V(size<2>(acc_dp) == size<2>(acc_s)); // MMA
|
|
|
|
clear(acc_dp);
|
|
// Tensor acc_dp_reshaped = make_tensor(acc_dp.data(), flash::convert_layout_acc_rowcol(acc_dp.layout()));
|
|
// #pragma unroll
|
|
// for (int mi = 0; mi < size<0>(acc_dp_reshaped); ++mi) {
|
|
// #pragma unroll
|
|
// for (int ni = 0; ni < size<1>(acc_dp_reshaped); ++ni) {
|
|
// acc_dp_reshaped(mi, ni) = -dP_sum(mi);
|
|
// }
|
|
// }
|
|
|
|
// if (cute::thread0()) { print(dP_sum); }
|
|
|
|
flash::gemm</*A_in_regs=*/false, /*B_in_regs=*/Kernel_traits::Is_V_in_regs>(
|
|
acc_dp, tdPrdO, tdPrV, tdPsdO, tdPsV, tiled_mma_sdp,
|
|
smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV
|
|
);
|
|
|
|
// Reshape acc_dp from (MMA=4, MMA_N, MMA_N) to (col=(2, MMA_N), row=(2, MMA_N))
|
|
Tensor dS = make_tensor(acc_dp.data(), scores.layout());
|
|
auto pointwise_mult = [](float p, float dp, float d) {
|
|
return p * (!Is_dropout || p >= 0 ? dp - d : d);
|
|
};
|
|
#pragma unroll
|
|
for (int mi = 0; mi < size<0>(dS); ++mi) {
|
|
#pragma unroll
|
|
for (int ni = 0; ni < size<1>(dS); ++ni) {
|
|
dS(mi, ni) = pointwise_mult(scores(mi, ni), dS(mi, ni), dP_sum(mi));
|
|
}
|
|
}
|
|
// if (cute::thread0()) { print(dS); }
|
|
|
|
Tensor acc_dq = partition_fragment_C(tiled_mma_dq, Shape<Int<kBlockM>, Int<kHeadDim>>{}); // MMA, MMA_N, MMA_K
|
|
tdQgdQaccum.data() = tdQgdQaccum.data() + (-int(kBlockM * params.h * params.d_rounded));
|
|
if (Is_first || Seq_parallel) {
|
|
clear(acc_dq);
|
|
} else {
|
|
// Reshape acc_dq from (4, 1, 2) to (4, 2, 1) to write to gdQaccum
|
|
Tensor acc_dq_reshaped = make_tensor(acc_dq.data(),
|
|
make_layout(get<0>(acc_dq.layout()),
|
|
get<2>(acc_dq.layout()),
|
|
get<1>(acc_dq.layout())));
|
|
cute::copy(gmem_tiled_copy_dQaccum, tdQgdQaccum, acc_dq_reshaped);
|
|
}
|
|
|
|
if (Double_buffer && m_block > m_block_min) {
|
|
// Double buffer for sQ
|
|
const int sQ_offset = m_block % 2 == 0 ? size(sQ) : -size(sQ);
|
|
tQsQ.data() = tQsQ.data() + sQ_offset;
|
|
tSsQ.data() = tSsQ.data() + sQ_offset;
|
|
// Advance gQ
|
|
tQgQ.data() = tQgQ.data() + (-int(kBlockM * params.q_row_stride));
|
|
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ);
|
|
flash::cp_async_fence();
|
|
}
|
|
|
|
Tensor dS_reshaped = make_tensor(dS.data(), acc_dp.layout());
|
|
// Convert dS from fp32 to fp16
|
|
Tensor tdSrdS = flash::convert_type<Element>(dS_reshaped);
|
|
// if (cute::thread0()) { print(tPrP); }
|
|
Tensor tdSadS = smem_thr_copy_PdS.retile_S(tdSrdS); // ((Atom,AtomNum), MMA_N, MMA_N)
|
|
cute::copy(smem_tiled_copy_PdS, tdSadS, tdSsdS);
|
|
__syncthreads();
|
|
|
|
// Layout p_l = tPrP.layout();
|
|
// Tensor tdVrPt = make_tensor(tPrP.data(), make_layout(get<0>(p_l), get<2>(p_l), get<1>(p_l)));
|
|
// flash::gemm_rs(acc_dv, tdVrPt, tdVrdO, tdVsdOt, tiled_mma_dkv, smem_thr_copy_QdOt);
|
|
// Tensor tdKrdSt = make_tensor(tdSrdS.data(), tdVrPt.layout());
|
|
// flash::gemm_rs(acc_dk, tdKrdSt, tdKrQt, tdKsQt, tiled_mma_dkv, smem_thr_copy_QdOt);
|
|
flash::gemm(acc_dv, tdVrPt, tdVrdO, tdVsPt, tdVsdOt, tiled_mma_dkv,
|
|
smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
|
|
// if (cute::thread0() && n_block == 0 && m_block == 0) { print(tdVrPt); }
|
|
// if (cute::thread0()) { print(acc_dv); }
|
|
|
|
__syncthreads(); // Need syncthreads since we're writing to the same sdO location
|
|
|
|
if (m_block > m_block_min) {
|
|
// Advance gdO
|
|
tdOgdO.data() = tdOgdO.data() + (-int(kBlockM * params.do_row_stride));
|
|
if (Is_first) {
|
|
tdOgO.data() = tdOgO.data() + (-int(kBlockM * params.o_row_stride));
|
|
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgdO, tdOrdO, tQcQ, tQpQ);
|
|
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgO, tdOrO, tQcQ, tQpQ);
|
|
} else {
|
|
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgdO, tdOsdO, tQcQ, tQpQ);
|
|
flash::cp_async_fence();
|
|
}
|
|
}
|
|
|
|
flash::gemm(acc_dq, tdQrdS, tdQrKt, tdQsdS, tdQsKt, tiled_mma_dq,
|
|
smem_tiled_copy_dS, smem_tiled_copy_Kt, smem_thr_copy_dS, smem_thr_copy_Kt);
|
|
// if (cute::thread0()) { print(acc_dq); }
|
|
|
|
if (m_block > m_block_min) {
|
|
gLSE.data() = gLSE.data() + (-int(kBlockM));
|
|
#pragma unroll
|
|
for (int mi = 0; mi < size(lse); ++mi) { lse(mi) = gLSE(get<0>(taccScS_row(mi))); }
|
|
gdPsum.data() = gdPsum.data() + (-int(kBlockM));
|
|
}
|
|
|
|
if (!Is_last) {
|
|
// Reshape acc_dq from (4, 1, 2) to (4, 2, 1) to write to gdQaccum
|
|
Tensor acc_dq_reshaped = make_tensor(acc_dq.data(),
|
|
make_layout(get<0>(acc_dq.layout()),
|
|
get<2>(acc_dq.layout()),
|
|
get<1>(acc_dq.layout())));
|
|
if (!Seq_parallel) {
|
|
cute::copy(gmem_tiled_copy_dQaccum, acc_dq_reshaped, tdQgdQaccum);
|
|
} else {
|
|
// if (cute::thread0()) { print(acc_dq.layout()); printf("\n"); print(acc_dq_reshaped.layout()); printf("\n"); print(tdQgdQaccum.layout()); printf("\n"); }
|
|
CUTE_STATIC_ASSERT_V(size(acc_dq) == size(tdQgdQaccum));
|
|
#pragma unroll
|
|
for (int i = 0; i < size(acc_dq); ++i) { atomicAdd(&tdQgdQaccum(i), acc_dq(i)); }
|
|
}
|
|
} else {
|
|
#pragma unroll
|
|
for (int i = 0; i < size(acc_dq); ++i) { acc_dq(i) *= params.scale_softmax_rp_dropout; }
|
|
// Convert acc_dq from fp32 to fp16
|
|
Tensor rdQ = flash::convert_type<Element>(acc_dq);
|
|
Tensor taccdQrdQ = smem_thr_copy_dQ.retile_S(rdQ); // ((Atom,AtomNum), MMA_N, MMA_N)
|
|
cute::copy(smem_tiled_copy_dQ, taccdQrdQ, taccdQsdQ);
|
|
}
|
|
|
|
flash::gemm(acc_dk, tdKrdSt, tdKrQt, tdKsdSt, tdKsQt, tiled_mma_dkv,
|
|
smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
|
|
// if (cute::thread0()) { print(acc_dk); }
|
|
if (Double_buffer) { // Double buffer for sQ
|
|
tdKsQt.data() = tdKsQt.data() + (m_block % 2 == 0 ? size(sQ) : -size(sQ));
|
|
}
|
|
if (!Double_buffer && m_block > m_block_min) {
|
|
__syncthreads();
|
|
// Advance gQ
|
|
tQgQ.data() = tQgQ.data() + (-int(kBlockM * params.q_row_stride));
|
|
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ);
|
|
flash::cp_async_fence();
|
|
}
|
|
|
|
if (Is_first && m_block > m_block_min) {
|
|
cute::copy(tdOrdO, tdOsdO);
|
|
dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, gdPsum,
|
|
Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
|
|
}
|
|
|
|
if (Is_last) {
|
|
__syncthreads();
|
|
Tensor tdQrdQ = make_tensor<Element>(shape(tdQgdQ));
|
|
cute::copy(gmem_tiled_copy_dQ, tdQsdQ, tdQrdQ);
|
|
tdQgdQ.data() = tdQgdQ.data() + (-int(kBlockM * params.dq_row_stride));
|
|
Tensor cdQ = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
|
|
Tensor tdQcdQ = gmem_thr_copy_dQ.partition_D(cdQ);
|
|
#pragma unroll
|
|
for (int m = 0; m < size<1>(tdQgdQ); ++m) {
|
|
if (Is_even_MN || get<0>(tdQcdQ(0, m, 0)) < binfo.actual_seqlen_q - m_block * kBlockM) {
|
|
cute::copy(gmem_tiled_copy_dQ, tdQrdQ(_, m, _), tdQgdQ(_, m, _));
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// Epilogue
|
|
|
|
if (Is_dropout) {
|
|
#pragma unroll
|
|
for (int i = 0; i < size(acc_dv); ++i) { acc_dv(i) *= params.rp_dropout; }
|
|
}
|
|
#pragma unroll
|
|
for (int i = 0; i < size(acc_dk); ++i) { acc_dk(i) *= params.scale_softmax_rp_dropout; }
|
|
|
|
// Convert acc_dv from fp32 to fp16
|
|
Tensor rdK = flash::convert_type<Element>(acc_dk);
|
|
Tensor rdV = flash::convert_type<Element>(acc_dv);
|
|
|
|
Tensor sdK = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutdKV{}); // (SMEM_N, SMEM_K)
|
|
Tensor sdV = make_tensor(sdK.data() + size(sdK), typename Kernel_traits::SmemLayoutdKV{}); // (SMEM_N, SMEM_K)
|
|
|
|
// Partition sdV and sdK to match the accumulator partitioning
|
|
auto smem_tiled_copy_dKV = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdKV{}, tiled_mma_dkv);
|
|
auto smem_thr_copy_dKV = smem_tiled_copy_dKV.get_thread_slice(tidx);
|
|
Tensor taccdKrdK = smem_thr_copy_dKV.retile_S(rdK); // ((Atom,AtomNum), MMA_N, MMA_N)
|
|
Tensor taccdKsdK = smem_thr_copy_dKV.partition_D(sdK); // ((Atom,AtomNum),PIPE_M,PIPE_N)
|
|
Tensor taccdVrdV = smem_thr_copy_dKV.retile_S(rdV); // ((Atom,AtomNum), MMA_N, MMA_N)
|
|
Tensor taccdVsdV = smem_thr_copy_dKV.partition_D(sdV); // ((Atom,AtomNum),PIPE_M,PIPE_N)
|
|
|
|
// We need syncthreads here since we're writing to the same location as sK and sV.
|
|
// Without syncthreads, some thread might modify the location of sK while another thread
|
|
// is reading it for dQ gemm, leading to a race condition.
|
|
// If Is_last, there's already a __syncthreads() at the end of the loop.
|
|
if (!Is_last) { __syncthreads(); }
|
|
|
|
cute::copy(smem_tiled_copy_dKV, taccdKrdK, taccdKsdK);
|
|
cute::copy(smem_tiled_copy_dKV, taccdVrdV, taccdVsdV);
|
|
|
|
const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
|
|
+ n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
|
|
const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
|
|
+ n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
|
|
Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
|
|
Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
|
make_stride(params.dk_row_stride, _1{}));
|
|
Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
|
|
Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
|
make_stride(params.dv_row_stride, _1{}));
|
|
|
|
typename Kernel_traits::GmemTiledCopydKV gmem_tiled_copy_dKV;
|
|
auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx);
|
|
Tensor tdKsdK = gmem_thr_copy_dKV.partition_S(sdK); // ((Atom,AtomNum),ATOM_M,ATOM_N)
|
|
Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
|
|
Tensor tdVsdV = gmem_thr_copy_dKV.partition_S(sdV); // ((Atom,AtomNum),ATOM_M,ATOM_N)
|
|
Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);
|
|
|
|
__syncthreads();
|
|
Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
|
|
cute::copy(gmem_tiled_copy_dKV, tdKsdK, tdKrdK);
|
|
Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
|
|
cute::copy(gmem_tiled_copy_dKV, tdVsdV, tdVrdV);
|
|
Tensor cdKV = make_identity_tensor(make_shape(size<0>(sdK), size<1>(sdK))); // (BLK_N,BLK_K) -> (blk_n,blk_k)
|
|
Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
|
|
Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
|
|
#pragma unroll
|
|
for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
|
|
// Clear_OOB_K must be false since we don't want to write zeros to gmem
|
|
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
|
|
gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
|
|
);
|
|
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
|
|
gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
|
|
);
|
|
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Has_alibi, bool Is_even_M, bool Is_even_K, typename Params>
|
|
inline __device__ void compute_dq_dk_dv(const Params ¶ms) {
|
|
|
|
// The block index for the batch.
|
|
const int bidb = blockIdx.x;
|
|
// const int bidb = blockIdx.y;
|
|
// The block index for the head.
|
|
const int bidh = blockIdx.y;
|
|
// const int bidh = blockIdx.z;
|
|
// The thread index.
|
|
const int tidx = threadIdx.x;
|
|
|
|
const int n_block_max = (params.seqlen_k + Kernel_traits::kBlockN - 1) / Kernel_traits::kBlockN;
|
|
if (n_block_max == 1) {
|
|
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, true, true>(params, bidb, bidh, 0);
|
|
} else {
|
|
// Iterating backward from n_block_max - 1 to 0 might save 1 register
|
|
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, true, false>(params, bidb, bidh, n_block_max - 1);
|
|
for (int n_block = n_block_max - 2; n_block > 0; n_block--) {
|
|
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, false, false>(params, bidb, bidh, n_block);
|
|
}
|
|
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, false, true>(params, bidb, bidh, 0);
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, typename Params>
|
|
inline __device__ void compute_dq_dk_dv_seqk_parallel(const Params ¶ms) {
|
|
|
|
// The block index for the batch.
|
|
const int bidb = blockIdx.y;
|
|
// The block index for the head.
|
|
const int bidh = blockIdx.z;
|
|
|
|
// If deterministic, each thread block will do atomicAdd to a different dQ_accum buffer.
|
|
for (int n_block = blockIdx.x; n_block < (params.seqlen_k + Kernel_traits::kBlockN - 1) / Kernel_traits::kBlockN; n_block += gridDim.x) {
|
|
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, false, false, /*Seq_parallel=*/true>(params, bidb, bidh, n_block);
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
} // namespace flash
|