663 lines
34 KiB
Python
663 lines
34 KiB
Python
# Copyright (c) 2022, Tri Dao.
|
|
|
|
import math
|
|
from functools import partial
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from einops import rearrange
|
|
|
|
try:
|
|
from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func
|
|
from flash_attn.flash_attn_interface import flash_attn_unpadded_kvpacked_func
|
|
except ImportError:
|
|
flash_attn_unpadded_qkvpacked_func, flash_attn_unpadded_kvpacked_func = None, None
|
|
|
|
try:
|
|
from flash_attn.ops.flash_attn_triton import flash_attn_qkvpacked_func, flash_attn_kvpacked_func
|
|
except ImportError:
|
|
flash_attn_qkvpacked_func, flash_attn_kvpacked_func = None, None
|
|
|
|
try:
|
|
from flash_attn.ops.fused_dense import FusedDense, ColumnParallelLinear, RowParallelLinear
|
|
except ImportError:
|
|
FusedDense, ColumnParallelLinear, RowParallelLinear = None, None, None
|
|
|
|
try:
|
|
from flash_attn.layers.rotary import RotaryEmbedding
|
|
except ImportError:
|
|
RotaryEmbedding = None
|
|
|
|
try:
|
|
import ft_attention
|
|
except ImportError:
|
|
ft_attention = None
|
|
|
|
|
|
class FlashSelfAttention(nn.Module):
|
|
"""Implement the scaled dot product attention with softmax.
|
|
Arguments
|
|
---------
|
|
softmax_scale: The temperature to use for the softmax attention.
|
|
(default: 1/sqrt(d_keys) where d_keys is computed at
|
|
runtime)
|
|
attention_dropout: The dropout rate to apply to the attention
|
|
(default: 0.0)
|
|
"""
|
|
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
|
|
triton=False):
|
|
super().__init__()
|
|
if attention_dropout != 0.0 or not triton:
|
|
assert flash_attn_unpadded_qkvpacked_func is not None, 'FlashAttention is not installed'
|
|
if attention_dropout == 0.0 and triton:
|
|
assert flash_attn_qkvpacked_func is not None, 'FlashAttention Triton is not installed'
|
|
self.causal = causal
|
|
self.softmax_scale = softmax_scale
|
|
self.drop = nn.Dropout(attention_dropout)
|
|
self.triton = triton
|
|
|
|
def forward(self, qkv, causal=None, cu_seqlens=None, max_seqlen=None):
|
|
"""Implements the multihead softmax attention.
|
|
Arguments
|
|
---------
|
|
qkv: The tensor containing the query, key, and value.
|
|
If cu_seqlens is None and max_seqlen is None, then qkv has shape (B, S, 3, H, D).
|
|
If cu_seqlens is not None and max_seqlen is not None, then qkv has shape
|
|
(total, 3, H, D), where total is the sum of the sequence lengths in the batch.
|
|
causal: if passed, will override self.causal
|
|
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
|
of the sequences in the batch, used to index into qkv.
|
|
max_seqlen: int. Maximum sequence length in the batch.
|
|
Returns:
|
|
--------
|
|
out: (total, H, D) if cu_seqlens is not None and max_seqlen is not None,
|
|
else (B, S, H, D).
|
|
"""
|
|
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
|
assert qkv.is_cuda
|
|
causal = self.causal if causal is None else causal
|
|
unpadded = cu_seqlens is not None
|
|
if unpadded:
|
|
assert cu_seqlens.dtype == torch.int32
|
|
assert max_seqlen is not None
|
|
assert isinstance(max_seqlen, int)
|
|
return flash_attn_unpadded_qkvpacked_func(
|
|
qkv, cu_seqlens, max_seqlen, self.drop.p if self.training else 0.0,
|
|
softmax_scale=self.softmax_scale, causal=causal
|
|
)
|
|
else:
|
|
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
|
# Triton version doesn't support dropout
|
|
if self.triton and (self.drop.p == 0 or not self.training):
|
|
output = flash_attn_qkvpacked_func(qkv, None, causal, self.softmax_scale)
|
|
else:
|
|
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
|
max_seqlen = seqlen
|
|
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
|
device=qkv.device)
|
|
output = flash_attn_unpadded_qkvpacked_func(
|
|
qkv, cu_seqlens, max_seqlen, self.drop.p if self.training else 0.0,
|
|
softmax_scale=self.softmax_scale, causal=causal
|
|
)
|
|
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
|
return output
|
|
|
|
|
|
class FlashCrossAttention(nn.Module):
|
|
"""Implement the scaled dot product attention with softmax.
|
|
Arguments
|
|
---------
|
|
softmax_scale: The temperature to use for the softmax attention.
|
|
(default: 1/sqrt(d_keys) where d_keys is computed at
|
|
runtime)
|
|
attention_dropout: The dropout rate to apply to the attention
|
|
(default: 0.0)
|
|
"""
|
|
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
|
|
triton=False):
|
|
super().__init__()
|
|
if attention_dropout != 0.0 or not triton:
|
|
assert flash_attn_unpadded_kvpacked_func is not None, 'FlashAttention is not installed'
|
|
if attention_dropout == 0.0 and triton:
|
|
assert flash_attn_kvpacked_func is not None, 'FlashAttention Triton is not installed'
|
|
self.causal = causal
|
|
self.softmax_scale = softmax_scale
|
|
self.drop = nn.Dropout(attention_dropout)
|
|
self.triton = triton
|
|
|
|
def forward(self, q, kv, causal=None, cu_seqlens=None, max_seqlen=None,
|
|
cu_seqlens_k=None, max_seqlen_k=None):
|
|
"""Implements the multihead softmax attention.
|
|
Arguments
|
|
---------
|
|
q: The tensor containing the query. (B, Sq, H, D)
|
|
kv: The tensor containing the key and value. (B, Sk, 2, H, D)
|
|
causal: if passed, will override self.causal
|
|
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
|
of the sequences in the batch, used to index into q.
|
|
max_seqlen: int. Maximum sequence length in the batch of q.
|
|
cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
|
of the sequences in the batch, used to index into kv.
|
|
max_seqlen_k: int. Maximum sequence length in the batch of k and v.
|
|
"""
|
|
assert q.dtype in [torch.float16, torch.bfloat16]
|
|
assert q.is_cuda and kv.is_cuda
|
|
causal = self.causal if causal is None else causal
|
|
unpadded = cu_seqlens is not None
|
|
if unpadded:
|
|
assert cu_seqlens.dtype == torch.int32
|
|
assert max_seqlen is not None
|
|
assert isinstance(max_seqlen, int)
|
|
assert cu_seqlens_k is not None
|
|
assert cu_seqlens_k.dtype == torch.int32
|
|
assert max_seqlen_k is not None
|
|
assert isinstance(max_seqlen, int)
|
|
return flash_attn_unpadded_kvpacked_func(
|
|
q, kv, cu_seqlens, cu_seqlens_k, max_seqlen, max_seqlen_k,
|
|
self.drop.p if self.training else 0.0,
|
|
softmax_scale=self.softmax_scale, causal=causal
|
|
)
|
|
else:
|
|
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
|
seqlen_k = kv.shape[1]
|
|
assert kv.shape[0] == batch_size and kv.shape[3] == q.shape[2] and kv.shape[4] == q.shape[3]
|
|
if self.triton and (self.drop.p == 0.0 or not self.training): # Triton version doesn't support dropout
|
|
output = flash_attn_kvpacked_func(q, kv, None, causal, self.softmax_scale)
|
|
else:
|
|
q = rearrange(q, 'b s ... -> (b s) ...')
|
|
kv = rearrange(kv, 'b s ... -> (b s) ...')
|
|
cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q,
|
|
dtype=torch.int32, device=q.device)
|
|
cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k,
|
|
dtype=torch.int32, device=kv.device)
|
|
output = flash_attn_unpadded_kvpacked_func(
|
|
q, kv, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
|
|
self.drop.p if self.training else 0.0,
|
|
softmax_scale=self.softmax_scale, causal=causal
|
|
)
|
|
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
|
return output
|
|
|
|
|
|
class SelfAttention(nn.Module):
|
|
"""Implement the scaled dot product attention with softmax.
|
|
Arguments
|
|
---------
|
|
softmax_scale: The temperature to use for the softmax attention.
|
|
(default: 1/sqrt(d_keys) where d_keys is computed at
|
|
runtime)
|
|
attention_dropout: The dropout rate to apply to the attention
|
|
(default: 0.0)
|
|
"""
|
|
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
|
|
super().__init__()
|
|
self.causal = causal
|
|
self.softmax_scale = softmax_scale
|
|
self.drop = nn.Dropout(attention_dropout)
|
|
|
|
def forward(self, qkv, causal=None, key_padding_mask=None):
|
|
"""Implements the multihead softmax attention.
|
|
Arguments
|
|
---------
|
|
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D)
|
|
causal: if passed, will override self.causal
|
|
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
|
|
False means to mask out. (B, S)
|
|
"""
|
|
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
|
causal = self.causal if causal is None else causal
|
|
q, k, v = qkv.unbind(dim=2)
|
|
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
|
scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
|
|
if key_padding_mask is not None:
|
|
padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype,
|
|
device=scores.device)
|
|
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
|
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
|
scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s')
|
|
if causal:
|
|
# "triu_tril_cuda_template" not implemented for 'BFloat16'
|
|
# So we have to construct the mask in float
|
|
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
|
|
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
|
scores = scores + causal_mask.to(dtype=scores.dtype)
|
|
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
|
attention_drop = self.drop(attention)
|
|
output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
|
|
return output
|
|
|
|
|
|
class CrossAttention(nn.Module):
|
|
"""Implement the scaled dot product attention with softmax.
|
|
Arguments
|
|
---------
|
|
softmax_scale: The temperature to use for the softmax attention.
|
|
(default: 1/sqrt(d_keys) where d_keys is computed at
|
|
runtime)
|
|
attention_dropout: The dropout rate to apply to the attention
|
|
(default: 0.0)
|
|
"""
|
|
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
|
|
super().__init__()
|
|
self.causal = causal
|
|
self.softmax_scale = softmax_scale
|
|
self.drop = nn.Dropout(attention_dropout)
|
|
|
|
def forward(self, q, kv, causal=None, key_padding_mask=None):
|
|
"""Implements the multihead softmax attention.
|
|
Arguments
|
|
---------
|
|
q: The tensor containing the query. (B, Sq, H, D)
|
|
kv: The tensor containing the key and value. (B, Sk, 2, H, D)
|
|
causal: if passed, will override self.causal
|
|
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
|
|
False means to mask out. (B, Sk)
|
|
"""
|
|
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
|
causal = self.causal if causal is None else causal
|
|
seqlen_k = kv.shape[1]
|
|
assert kv.shape[0] == batch_size and kv.shape[3] == q.shape[2] and kv.shape[4] == q.shape[3]
|
|
k, v = kv.unbind(dim=2)
|
|
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
|
scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
|
|
if key_padding_mask is not None:
|
|
padding_mask = torch.full((batch_size, seqlen_k), -10000.0, dtype=scores.dtype,
|
|
device=scores.device)
|
|
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
|
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
|
scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s')
|
|
if causal:
|
|
# "triu_tril_cuda_template" not implemented for 'BFloat16'
|
|
# So we have to construct the mask in float
|
|
causal_mask = torch.triu(torch.full((seqlen_q, seqlen_k), -10000.0,
|
|
device=scores.device), 1)
|
|
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
|
scores = scores + causal_mask.to(dtype=scores.dtype)
|
|
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
|
attention_drop = self.drop(attention)
|
|
output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
|
|
return output
|
|
|
|
|
|
class LinearResidual(nn.Linear):
|
|
"""Wrap nn.Linear to return the residual as well. For compatibility with FusedDense.
|
|
"""
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
return super().forward(input), input
|
|
|
|
|
|
def _update_kv_cache(kv, inference_params, layer_idx):
|
|
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
|
|
"""
|
|
# Pre-allocate memory for key-values for inference.
|
|
num_heads, head_dim = kv.shape[-2:]
|
|
if layer_idx not in inference_params.key_value_memory_dict:
|
|
kv_cache = torch.empty(
|
|
inference_params.max_batch_size, inference_params.max_sequence_len, 2,
|
|
num_heads, head_dim, dtype=kv.dtype, device=kv.device
|
|
)
|
|
inference_params.key_value_memory_dict[layer_idx] = kv_cache
|
|
else:
|
|
if not inference_params.fused_ft_kernel:
|
|
kv_cache = inference_params.key_value_memory_dict[layer_idx]
|
|
else:
|
|
# For FT, k_cache has shape (b, h, headdim / packsize, s, packsize)
|
|
# where packsize = 4 if fp32, 8 if fp16 or bf16.
|
|
# v_cache has shape (b, h, s, headdim)
|
|
k_cache, v_cache = inference_params.key_value_memory_dict[layer_idx]
|
|
kv_cache = None
|
|
# Adjust key and value for inference
|
|
batch_start = inference_params.batch_size_offset
|
|
batch_end = batch_start + kv.shape[0]
|
|
sequence_start = inference_params.sequence_len_offset
|
|
sequence_end = sequence_start + kv.shape[1]
|
|
assert batch_end <= (kv_cache.shape[0] if kv_cache is not None else v_cache.shape[0])
|
|
assert sequence_end <= (kv_cache.shape[1] if kv_cache is not None else v_cache.shape[2])
|
|
# Copy key and values.
|
|
if not inference_params.fused_ft_kernel:
|
|
assert kv_cache is not None
|
|
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
|
|
kv = kv_cache[batch_start:batch_end, :sequence_end, ...]
|
|
return kv
|
|
else:
|
|
assert inference_params.sequence_len_offset == 0
|
|
# FT kernel requires different layouts for the k_cache and v_cache.
|
|
assert kv.dtype in [torch.float16, torch.bfloat16, torch.float32]
|
|
packsize = 4 if kv.dtype == torch.float32 else 8
|
|
if kv_cache is not None:
|
|
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
|
|
k_cache = rearrange(kv_cache[:, :, 0], 'b s h (d packsize) -> b h d s packsize',
|
|
packsize=packsize).contiguous()
|
|
v_cache = rearrange(kv_cache[:, :, 1], 'b s h d -> b h s d').contiguous()
|
|
inference_params.key_value_memory_dict[layer_idx] = (k_cache, v_cache)
|
|
else:
|
|
k_cache[batch_start:batch_end, :, :, :sequence_end, :] = rearrange(
|
|
kv[:, :, 0], 'b s h (d packsize) -> b h d s packsize', packsize=packsize
|
|
)
|
|
v_cache[batch_start:batch_end, :, :sequence_end, :] = rearrange(
|
|
kv[:, :, 1], 'b s h d -> b h s d'
|
|
)
|
|
return kv
|
|
|
|
|
|
class MHA(nn.Module):
|
|
"""Multi-head self-attention and cross-attention
|
|
"""
|
|
|
|
def __init__(self, embed_dim, num_heads, cross_attn=False,
|
|
qkv_proj_bias=True, out_proj_bias=True,
|
|
dropout=0.0, softmax_scale=None, causal=False, layer_idx=None, dwconv=False,
|
|
rotary_emb_dim=0, rotary_emb_base=10000.0, rotary_emb_scale_base=None,
|
|
rotary_emb_interleaved=False, fused_bias_fc=False, use_flash_attn=False,
|
|
return_residual=False, checkpointing=False, device=None, dtype=None) -> None:
|
|
"""
|
|
return_residual: whether to return the input x along with the output. This is for
|
|
performance reason: for post-norm architecture, returning the input allows us
|
|
to fuse the backward of nn.Linear with the residual connection.
|
|
"""
|
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
|
super().__init__()
|
|
self.embed_dim = embed_dim
|
|
self.cross_attn = cross_attn
|
|
self.causal = causal
|
|
self.layer_idx = layer_idx
|
|
self.dwconv = dwconv
|
|
self.rotary_emb_dim = rotary_emb_dim
|
|
self.use_flash_attn = use_flash_attn
|
|
self.return_residual = return_residual
|
|
self.checkpointing = checkpointing
|
|
|
|
self.num_heads = num_heads
|
|
assert self.embed_dim % num_heads == 0, "self.kdim must be divisible by num_heads"
|
|
self.head_dim = self.embed_dim // num_heads
|
|
|
|
if self.rotary_emb_dim > 0:
|
|
assert not cross_attn, 'MHA with rotary embedding does not support cross-attention yet'
|
|
assert RotaryEmbedding is not None, 'rotary_emb is not installed'
|
|
self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, base=rotary_emb_base,
|
|
scale_base=rotary_emb_scale_base,
|
|
interleaved=rotary_emb_interleaved, device=device)
|
|
|
|
if fused_bias_fc and FusedDense is None:
|
|
raise ImportError('fused_dense is not installed')
|
|
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
|
|
linear_resid_cls = (LinearResidual if not fused_bias_fc
|
|
else partial(FusedDense, return_residual=True))
|
|
inner_attn_cls = FlashSelfAttention if use_flash_attn else SelfAttention
|
|
inner_cross_attn_cls = FlashCrossAttention if use_flash_attn else CrossAttention
|
|
if not self.cross_attn:
|
|
if not self.return_residual:
|
|
self.Wqkv = linear_cls(embed_dim, 3 * embed_dim, bias=qkv_proj_bias,
|
|
**factory_kwargs)
|
|
else:
|
|
self.Wqkv = linear_resid_cls(embed_dim, 3 * embed_dim, bias=qkv_proj_bias,
|
|
**factory_kwargs)
|
|
if self.dwconv:
|
|
self.dwconv_qkv = nn.Conv1d(3 * embed_dim, 3 * embed_dim, kernel_size=3, padding=2,
|
|
groups=3 * embed_dim)
|
|
else:
|
|
self.Wq = linear_cls(embed_dim, embed_dim, bias=qkv_proj_bias, **factory_kwargs)
|
|
if not self.return_residual:
|
|
self.Wkv = linear_cls(embed_dim, 2 * embed_dim, bias=qkv_proj_bias,
|
|
**factory_kwargs)
|
|
else:
|
|
self.Wkv = linear_resid_cls(embed_dim, 2 * embed_dim, bias=qkv_proj_bias,
|
|
**factory_kwargs)
|
|
if self.dwconv:
|
|
self.dwconv_q = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, padding=2,
|
|
groups=embed_dim)
|
|
self.dwconv_kv = nn.Conv1d(2 * embed_dim, 2 * embed_dim, kernel_size=3, padding=2,
|
|
groups=2 * embed_dim)
|
|
self.inner_attn = inner_attn_cls(causal=causal, softmax_scale=softmax_scale,
|
|
attention_dropout=dropout)
|
|
self.inner_cross_attn = inner_cross_attn_cls(causal=causal, softmax_scale=softmax_scale,
|
|
attention_dropout=dropout)
|
|
self.out_proj = linear_cls(embed_dim, embed_dim, bias=out_proj_bias, **factory_kwargs)
|
|
|
|
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, fused_ft_kernel=True):
|
|
dtype = self.out_proj.weight.dtype if dtype is None else dtype
|
|
device = self.out_proj.weight.device
|
|
if not fused_ft_kernel:
|
|
return torch.empty(batch_size, max_seqlen, 2, self.num_heads, self.head_dim,
|
|
dtype=dtype, device=device)
|
|
else:
|
|
assert dtype in [torch.float16, torch.bfloat16, torch.float32]
|
|
packsize = 4 if dtype == torch.float32 else 8
|
|
assert self.head_dim % packsize == 0
|
|
k_cache = torch.empty(batch_size, self.num_heads, self.head_dim // packsize, max_seqlen,
|
|
packsize, dtype=dtype, device=device)
|
|
v_cache = torch.empty(batch_size, self.num_heads, max_seqlen, self.head_dim,
|
|
dtype=dtype, device=device)
|
|
return k_cache, v_cache
|
|
|
|
def _update_kv_cache(self, kv, inference_params):
|
|
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
|
|
"""
|
|
assert not self.dwconv, 'Generation does not support dwconv yet'
|
|
assert self.layer_idx is not None, 'Generation requires layer_idx in the constructor'
|
|
return _update_kv_cache(kv, inference_params, self.layer_idx)
|
|
|
|
def forward(self, x, x_kv=None, key_padding_mask=None, cu_seqlens=None, max_seqlen=None,
|
|
mixer_subset=None, inference_params=None, **kwargs):
|
|
"""
|
|
Arguments:
|
|
x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if
|
|
cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total
|
|
is the is the sum of the sequence lengths in the batch.
|
|
x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x.
|
|
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
|
of the sequences in the batch, used to index into x. Only applicable when using
|
|
FlashAttention.
|
|
max_seqlen: int. Maximum sequence length in the batch.
|
|
key_padding_mask: boolean mask, True means to keep, False means to mask out.
|
|
(batch, seqlen). Only applicable when not using FlashAttention.
|
|
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
|
before applying the query projection. Useful for e.g., ViT where we only care
|
|
about the CLS token in the last layer.
|
|
inference_params: for generation. Adapted from Megatron-LM (and Apex)
|
|
https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
|
|
"""
|
|
if cu_seqlens is not None:
|
|
assert max_seqlen is not None
|
|
assert key_padding_mask is None
|
|
assert self.use_flash_attn
|
|
assert not self.dwconv
|
|
assert self.rotary_emb_dim == 0
|
|
if key_padding_mask is not None:
|
|
assert cu_seqlens is None
|
|
assert max_seqlen is None
|
|
assert not self.use_flash_attn
|
|
if inference_params is not None:
|
|
assert key_padding_mask is None
|
|
assert cu_seqlens is None and max_seqlen is None
|
|
assert not self.dwconv
|
|
|
|
kwargs = ({'cu_seqlens': cu_seqlens, 'max_seqlen': max_seqlen, **kwargs}
|
|
if self.use_flash_attn else {'key_padding_mask': key_padding_mask, **kwargs})
|
|
if not self.cross_attn:
|
|
assert x_kv is None and mixer_subset is None
|
|
if not self.return_residual:
|
|
qkv = self.Wqkv(x)
|
|
else:
|
|
qkv, x = self.Wqkv(x)
|
|
if self.dwconv:
|
|
qkv = rearrange(self.dwconv_qkv(rearrange(qkv, 'b s d -> b d s'))[..., :-2],
|
|
'b d s -> b s d').contiguous()
|
|
qkv = rearrange(qkv, '... (three h d) -> ... three h d', three=3, d=self.head_dim)
|
|
if inference_params is None:
|
|
if self.rotary_emb_dim > 0:
|
|
qkv = self.rotary_emb(qkv)
|
|
if not self.checkpointing:
|
|
context = self.inner_attn(qkv, **kwargs)
|
|
else:
|
|
context = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **kwargs)
|
|
else:
|
|
if (not inference_params.fused_ft_kernel) or inference_params.sequence_len_offset == 0:
|
|
if self.rotary_emb_dim > 0:
|
|
qkv = self.rotary_emb(qkv, seqlen_offset=inference_params.sequence_len_offset)
|
|
q = qkv[:, :, 0]
|
|
kv = self._update_kv_cache(qkv[:, :, 1:], inference_params)
|
|
# If we're processing the prompt, causal=None (use self.causal).
|
|
# If we're decoding, then causal=False.
|
|
causal = None if inference_params.sequence_len_offset == 0 else False
|
|
context = self.inner_cross_attn(q, kv, causal=causal)
|
|
else:
|
|
assert inference_params.fused_ft_kernel
|
|
assert ft_attention is not None
|
|
batch_start = inference_params.batch_size_offset
|
|
batch_end = batch_start + qkv.shape[0]
|
|
k_cache, v_cache = inference_params.key_value_memory_dict[self.layer_idx]
|
|
lengths_per_sample = (inference_params.lengths_per_sample[batch_start:batch_end]
|
|
if inference_params.lengths_per_sample is not None else None)
|
|
rotary_emb_base = self.rotary_emb.base if self.rotary_emb_dim > 0 else 0
|
|
context = ft_attention.single_query_attention(
|
|
*rearrange(qkv, 'b 1 three h d -> b three h d').unbind(dim=1),
|
|
k_cache[batch_start:batch_end],
|
|
v_cache[batch_start:batch_end],
|
|
lengths_per_sample,
|
|
None, # rotary_cos_
|
|
None, # rotary_sin_
|
|
None, # nnz_head_idx
|
|
inference_params.sequence_len_offset,
|
|
self.rotary_emb_dim, rotary_emb_base,
|
|
# neox_rotary_style
|
|
(not self.rotary_emb.interleaved) if self.rotary_emb_dim > 0 else True
|
|
)
|
|
context = rearrange(context, 'b h d -> b 1 h d')
|
|
else:
|
|
if not self.return_residual:
|
|
q = self.Wq(x if mixer_subset is None else x[:, mixer_subset])
|
|
kv = self.Wkv(x_kv if x_kv is not None else x)
|
|
else:
|
|
if x_kv is not None:
|
|
kv, x_kv = self.Wkv(x_kv)
|
|
else:
|
|
kv, x = self.Wkv(x)
|
|
q = self.Wq(x if mixer_subset is None else x[:, mixer_subset])
|
|
q = rearrange(q, '... (h d) -> ... h d', d=self.head_dim)
|
|
kv = rearrange(kv, '... (two h d) -> ... two h d', two=2, d=self.head_dim)
|
|
if self.dwconv:
|
|
q = rearrange(self.dwconv_q(rearrange(q, 'b s d -> b d s'))[..., :-2],
|
|
'b d s -> b s d').contiguous()
|
|
kv = rearrange(self.dwconv_kv(rearrange(kv, 'b s d -> b d s'))[..., :-2],
|
|
'b d s -> b s d').contiguous()
|
|
if inference_params is None:
|
|
if not self.checkpointing:
|
|
context = self.inner_cross_attn(q, kv, **kwargs)
|
|
else:
|
|
context = torch.utils.checkpoint.checkpoint(self.inner_cross_attn, q, kv, **kwargs)
|
|
else:
|
|
kv = self._update_kv_cache(kv)
|
|
context = self.inner_cross_attn(q, kv, causal=False)
|
|
out = self.out_proj(rearrange(context, '... h d -> ... (h d)'))
|
|
return out if not self.return_residual else (out, x)
|
|
|
|
|
|
class ParallelMHA(nn.Module):
|
|
"""Multi-head self-attention and cross-attention
|
|
"""
|
|
|
|
def __init__(self, embed_dim, num_heads, process_group, qkv_proj_bias=True, out_proj_bias=True,
|
|
dropout=0.0, softmax_scale=None, causal=False, layer_idx=None,
|
|
rotary_emb_dim=0, rotary_emb_base=10000.0, rotary_emb_scale_base=None,
|
|
rotary_emb_interleaved=False, use_flash_attn=False, checkpointing=False,
|
|
sequence_parallel=True, device=None, dtype=None) -> None:
|
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
|
super().__init__()
|
|
self.embed_dim = embed_dim
|
|
self.causal = causal
|
|
self.layer_idx = layer_idx
|
|
self.rotary_emb_dim = rotary_emb_dim
|
|
self.use_flash_attn = use_flash_attn
|
|
self.checkpointing = checkpointing
|
|
|
|
self.num_heads = num_heads
|
|
assert self.embed_dim % num_heads == 0, "self.kdim must be divisible by num_heads"
|
|
self.head_dim = self.embed_dim // num_heads
|
|
|
|
if self.rotary_emb_dim > 0:
|
|
assert RotaryEmbedding is not None, 'rotary_emb is not installed'
|
|
self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, base=rotary_emb_base,
|
|
scale_base=rotary_emb_scale_base,
|
|
interleaved=rotary_emb_interleaved, device=device)
|
|
|
|
if ColumnParallelLinear is None or RowParallelLinear is None:
|
|
raise ImportError('fused_dense is not installed')
|
|
self.Wqkv = ColumnParallelLinear(embed_dim, 3 * embed_dim, process_group,
|
|
bias=qkv_proj_bias,
|
|
sequence_parallel=sequence_parallel, **factory_kwargs)
|
|
inner_attn_cls = FlashSelfAttention if use_flash_attn else SelfAttention
|
|
inner_cross_attn_cls = FlashCrossAttention if use_flash_attn else CrossAttention
|
|
self.inner_attn = inner_attn_cls(causal=causal, softmax_scale=softmax_scale,
|
|
attention_dropout=dropout)
|
|
self.inner_cross_attn = inner_cross_attn_cls(causal=causal, softmax_scale=softmax_scale,
|
|
attention_dropout=dropout)
|
|
self.out_proj = RowParallelLinear(embed_dim, embed_dim, process_group,
|
|
bias=out_proj_bias,
|
|
sequence_parallel=sequence_parallel, **factory_kwargs)
|
|
|
|
def forward(self, x, seqlen=None, inference_params=None, **kwargs):
|
|
"""
|
|
Arguments:
|
|
x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if seqlen=None.
|
|
If seqlen is not None, x is (batch * seqlen, hidden_dim). This is so that when we
|
|
split x during sequence parallel, we split the batch * seqlen dimension
|
|
(in case batch is small).
|
|
"""
|
|
qkv = self.Wqkv(x)
|
|
if seqlen is None:
|
|
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, d=self.head_dim)
|
|
else:
|
|
qkv = rearrange(qkv, '(b s) (three h d) -> b s three h d', s=seqlen, three=3,
|
|
d=self.head_dim)
|
|
if inference_params is None:
|
|
if self.rotary_emb_dim > 0:
|
|
qkv = self.rotary_emb(qkv)
|
|
if not self.checkpointing:
|
|
context = self.inner_attn(qkv, **kwargs)
|
|
else:
|
|
context = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **kwargs)
|
|
else:
|
|
if (not inference_params.fused_ft_kernel) or inference_params.sequence_len_offset == 0:
|
|
if self.rotary_emb_dim > 0:
|
|
qkv = self.rotary_emb(qkv, seqlen_offset=inference_params.sequence_len_offset)
|
|
q = qkv[:, :, 0]
|
|
assert self.layer_idx is not None, 'Generation requires layer_idx in the constructor'
|
|
kv = _update_kv_cache(qkv[:, :, 1:], inference_params, self.layer_idx)
|
|
# If we're processing the prompt, causal=None (use self.causal).
|
|
# If we're decoding, then causal=False.
|
|
causal = None if inference_params.sequence_len_offset == 0 else False
|
|
context = self.inner_cross_attn(q, kv, causal=causal)
|
|
else:
|
|
assert inference_params.fused_ft_kernel
|
|
assert ft_attention is not None
|
|
batch_start = inference_params.batch_size_offset
|
|
batch_end = batch_start + qkv.shape[0]
|
|
k_cache, v_cache = inference_params.key_value_memory_dict[self.layer_idx]
|
|
lengths_per_sample = (inference_params.lengths_per_sample[batch_start:batch_end]
|
|
if inference_params.lengths_per_sample is not None else None)
|
|
rotary_emb_base = self.rotary_emb.base if self.rotary_emb_dim > 0 else 0
|
|
context = ft_attention.single_query_attention(
|
|
*rearrange(qkv, 'b 1 three h d -> b three h d').unbind(dim=1),
|
|
k_cache[batch_start:batch_end],
|
|
v_cache[batch_start:batch_end],
|
|
lengths_per_sample,
|
|
None, # rotary_cos_
|
|
None, # rotary_sin_
|
|
None, # nnz_head_idx
|
|
inference_params.sequence_len_offset,
|
|
self.rotary_emb_dim, rotary_emb_base,
|
|
# neox_rotary_style
|
|
(not self.rotary_emb.interleaved) if self.rotary_emb_dim > 0 else True
|
|
)
|
|
context = rearrange(context, 'b h d -> b 1 h d')
|
|
if seqlen is None:
|
|
context = rearrange(context, 'b s h d -> b s (h d)')
|
|
else:
|
|
context = rearrange(context, 'b s h d -> (b s) (h d)')
|
|
out = self.out_proj(context)
|
|
return out
|