flash-attention/flash_attn/utils/generation.py
2022-12-27 21:01:50 -08:00

65 lines
2.6 KiB
Python

# Copyright (c) 2022, Tri Dao.
# Adapted from https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/forward_step.py#L31
from dataclasses import dataclass, field
import torch
from einops import rearrange
from transformers.generation import GreedySearchDecoderOnlyOutput
@dataclass
class InferenceParams:
"""Inference parameters that are passed to the main model in order
to efficienly calculate and store the context during inference."""
max_sequence_len: int
max_batch_size: int
sequence_len_offset: int = 0
batch_size_offset: int = 0
key_value_memory_dict: dict = field(default_factory=dict)
def greedy_decode(input_ids, model, max_length):
"""Greedy decoding. This is a very simple implementation.
We assume that all sequences in the same batch have the same length.
Arguments:
input_ids: (batch, seq_len)
max_length: int
Returns: GreedySearchDecoderOnlyOutput, with the following fields:
sequences: (batch, max_length)
scores: tuples of (batch, vocab_size)
"""
batch_size, seqlen_og = input_ids.shape
inference_params = InferenceParams(max_sequence_len=max_length, max_batch_size=batch_size)
scores = []
with torch.inference_mode():
logits = model(input_ids, inference_params=inference_params).logits[:, -1]
scores.append(logits)
next_token = logits.argmax(dim=-1)
sequences = [next_token]
inference_params.sequence_len_offset = seqlen_og
while True:
position_ids = torch.full((batch_size, 1), inference_params.sequence_len_offset,
dtype=torch.long, device=input_ids.device)
logits = model(rearrange(next_token, 'b -> b 1'), position_ids=position_ids,
inference_params=inference_params).logits[:, -1]
scores.append(logits)
next_token = logits.argmax(dim=-1)
sequences.append(next_token)
inference_params.sequence_len_offset += 1
if inference_params.sequence_len_offset >= max_length - 1:
break
return GreedySearchDecoderOnlyOutput(
sequences=torch.cat([input_ids, torch.stack(sequences, dim=1)], dim=1),
scores=tuple(scores)
)
class GenerationMixin:
def generate(self, input_ids, max_length, return_dict_in_generate=False, output_scores=False):
output = greedy_decode(input_ids, self, max_length)
if not output_scores:
output.scores = None
return output if return_dict_in_generate else output.sequences