flash-attention/flash_attn/ops/fused_dense.py

458 lines
20 KiB
Python

# Copyright (c) 2022, Tri Dao.
# Inspired by https://github.com/NVIDIA/apex/blob/master/apex/fused_dense/fused_dense.py
# We make it work with pytorch amp and with bfloat16.
# The TensorParallel linear modules are inspired by https://github.com/NVIDIA/apex/blob/master/apex/transformer/tensor_parallel/layers.py
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.distributed import ProcessGroup
from torch.cuda.amp import custom_bwd, custom_fwd
# import fused_dense_cuda # from apex
import fused_dense_lib as fused_dense_cuda
from flash_attn.ops.gelu_activation import gelu_bwd
from flash_attn.utils.distributed import all_gather_raw, reduce_scatter_raw, reduce_scatter
class FusedDenseFunc(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, x, weight, bias, return_residual=False, process_group=None):
"""
If process_group is not None, we're doing Tensor Parallel with sequence parallelism:
we do an all_gather_raw of x before doing the matmul.
"""
ctx.compute_weight_gradient = weight.requires_grad
ctx.return_residual = return_residual
ctx.process_group = process_group
if torch.is_autocast_enabled():
x = x.to(dtype=torch.get_autocast_gpu_dtype())
x = x.contiguous()
if process_group is not None:
# We want to kick off the all_gather early, before weight dtype conversion
total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
else:
total_x = x
if torch.is_autocast_enabled():
weight = weight.to(dtype=torch.get_autocast_gpu_dtype())
bias = bias.to(dtype=torch.get_autocast_gpu_dtype()) if bias is not None else None
weight = weight.contiguous()
if process_group is not None:
handle_x.wait()
batch_shape = total_x.shape[:-1]
batch_dim = batch_shape.numel()
assert batch_dim <= 64 * 1024, 'fused_dense only supports dimension at most 64k'
output = F.linear(total_x, weight, bias)
if ctx.compute_weight_gradient:
ctx.save_for_backward(x, weight)
else:
ctx.save_for_backward(weight)
return output if not return_residual else (output, x)
@staticmethod
@custom_bwd
def backward(ctx, grad_output, *args):
grad_output = grad_output.contiguous()
if ctx.return_residual:
grad_input, = args
grad_input = grad_input.contiguous()
process_group = ctx.process_group
if ctx.compute_weight_gradient:
x, weight = ctx.saved_tensors
if process_group is not None:
total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
else:
total_x = x
else:
weight, = ctx.saved_tensors
total_x = None
batch_shape = grad_output.shape[:-1]
batch_dim = batch_shape.numel()
grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
if ctx.needs_input_grad[0]:
if not ctx.return_residual:
grad_input = F.linear(grad_output, weight.t())
else:
grad_input = torch.addmm(grad_input.reshape(batch_dim, grad_input.shape[-1]),
grad_output, weight)
grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1])
if process_group is not None:
grad_input, handle_grad_input = reduce_scatter_raw(grad_input, process_group,
async_op=True)
else:
grad_input = None
if ctx.needs_input_grad[1]:
assert ctx.compute_weight_gradient
if process_group is not None:
handle_x.wait()
grad_weight, grad_bias = fused_dense_cuda.linear_bias_wgrad(
total_x.reshape(batch_dim, total_x.shape[-1]), grad_output, ctx.needs_input_grad[2]
)
else:
grad_weight = None
grad_bias = grad_output if ctx.needs_input_grad[2] else None
if process_group is not None and ctx.needs_input_grad[0]:
handle_grad_input.wait()
return grad_input, grad_weight, grad_bias, None, None
def fused_dense_func(x: Tensor, weight: Tensor, bias: Optional[Tensor] = None,
return_residual: bool = False, process_group: Optional[ProcessGroup] = None):
batch_dim = x.shape[:-1].numel()
dtype_eligible = (x.dtype in [torch.float16, torch.bfloat16]
or (x.dtype == torch.float32 and torch.is_autocast_enabled()))
if (x.is_cuda and weight.is_cuda and (bias is None or bias.is_cuda) and batch_dim <= 64 * 1024
and dtype_eligible):
return FusedDenseFunc.apply(x, weight, bias, return_residual, process_group)
else:
assert process_group is None
out = F.linear(x, weight, bias)
return out if not return_residual else (out, x)
class FusedDense(nn.Linear):
def __init__(self, in_features: int, out_features: int, bias: bool = True,
return_residual: bool = False, device=None, dtype=None) -> None:
super().__init__(in_features, out_features, bias=bias, device=device, dtype=dtype)
self.return_residual = return_residual
def forward(self, x, process_group=None):
"""
If process_group is not None, we're doing Tensor Parallel with sequence parallelism:
we do an all_gather of x before doing the matmul.
"""
return fused_dense_func(x, self.weight, self.bias, return_residual=self.return_residual,
process_group=process_group)
class ColumnParallelLinear(nn.Linear):
def __init__(self, in_features: int, out_features: int, process_group: ProcessGroup,
bias: bool = True, device=None, dtype=None) -> None:
world_size = torch.distributed.get_world_size(process_group)
if out_features % world_size != 0:
raise ValueError(f'out_features ({out_features}) must be divisible by '
f'world_size ({world_size})')
super().__init__(in_features, out_features // world_size, bias=bias,
device=device, dtype=dtype)
self.process_group = process_group
def forward(self, x):
"""
We're doing Tensor Parallel with sequence parallelism: we do an all_gather of
x before doing the matmul.
"""
return fused_dense_func(x, self.weight, self.bias, process_group=self.process_group)
class RowParallelLinear(nn.Linear):
def __init__(self, in_features: int, out_features: int, process_group: ProcessGroup,
bias: bool = True, device=None, dtype=None) -> None:
world_size = torch.distributed.get_world_size(process_group)
rank = torch.distributed.get_rank(process_group)
if in_features % world_size != 0:
raise ValueError(f'in_features ({in_features}) must be divisible by '
f'world_size ({world_size})')
# Only rank 0 will have bias
super().__init__(in_features // world_size, out_features, bias=bias and rank == 0,
device=device, dtype=dtype)
self.process_group = process_group
def forward(self, x):
"""
We're doing Tensor Parallel with sequence parallelism: we do the matmul and then
a reduce_scatter of the result.
"""
out = fused_dense_func(x, self.weight, self.bias)
return reduce_scatter(out, self.process_group)
class FusedDenseGeluDenseFunc(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, x, weight1, bias1, weight2, bias2, save_pre_act=True, return_residual=False,
checkpoint_lvl=0, heuristic=0, process_group=None):
"""
If process_group is not None, we're doing Tensor Parallel with sequence parallelism:
we do an all_gather of x before doing the matmul.
checkpoint_lvl:
0: no recomputation in the bwd
1: recompute gelu_out in the bwd
2: recompute gelu_in and gelu_out in the bwd
"""
assert -1 <= heuristic <= 4
if not save_pre_act:
checkpoint_lvl = 2
assert checkpoint_lvl in [0, 1, 2]
ctx.return_residual = return_residual
ctx.process_group = process_group
ctx.checkpoint_lvl = checkpoint_lvl
ctx.heuristic = heuristic
if torch.is_autocast_enabled():
x = x.to(dtype=torch.get_autocast_gpu_dtype())
x = x.contiguous()
if process_group is not None:
# We want to kick off the all_gather early, before weight dtype conversion
total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
else:
total_x = x
if torch.is_autocast_enabled():
dtype = torch.get_autocast_gpu_dtype()
weight1, weight2 = [a.to(dtype=dtype) for a in [weight1, weight2]]
bias1 = bias1.to(dtype=dtype) if bias1 is not None else None
bias2 = bias2.to(dtype=dtype) if bias2 is not None else None
weight1 = weight1.contiguous()
bias1 = bias1.contiguous() if bias1 is not None else None
weight2 = weight2.contiguous()
bias2 = bias2.contiguous() if bias2 is not None else None
if process_group is not None:
handle_x.wait()
batch_shape, n = total_x.shape[:-1], total_x.shape[-1]
batch_dim = batch_shape.numel()
assert batch_dim <= 64 * 1024, 'fused_dense only supports dimension at most 64k'
if heuristic == -1:
gelu_in = F.linear(total_x, weight1, bias1)
output1 = F.gelu(gelu_in, approximate='tanh')
# This is before adding bias1
# gelu_in = F.linear(total_x.reshape(batch_dim, n), weight1)
# with torch.jit.fuser('fuser2'):
# output1 = bias_gelu(gelu_in, bias1)
else:
output1, *rest = fused_dense_cuda.linear_gelu_forward(
total_x.reshape(batch_dim, n), weight1, bias1, save_pre_act, heuristic
)
if save_pre_act:
gelu_in = rest[0]
output2 = F.linear(output1, weight2, bias2)
if checkpoint_lvl == 0:
ctx.save_for_backward(x, weight1, weight2, gelu_in, output1)
elif checkpoint_lvl == 1:
ctx.save_for_backward(x, weight1, weight2, gelu_in)
elif checkpoint_lvl == 2:
ctx.save_for_backward(x, weight1, weight2, bias1)
output2 = output2.reshape(*batch_shape, output2.shape[-1])
return output2 if not return_residual else (output2, x)
@staticmethod
@custom_bwd
def backward(ctx, grad_output, *args):
grad_output = grad_output.contiguous()
checkpoint_lvl = ctx.checkpoint_lvl
if ctx.return_residual:
grad_input, = args
grad_input = grad_input.contiguous()
process_group = ctx.process_group
x, weight1, weight2, *rest = ctx.saved_tensors
if process_group is None:
total_x = x
batch_shape = grad_output.shape[:-1]
batch_dim = batch_shape.numel()
if checkpoint_lvl in [0, 1]:
if process_group is not None:
total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
if checkpoint_lvl == 0:
gelu_in, output1 = rest
elif checkpoint_lvl == 1:
gelu_in, = rest
output1 = F.gelu(gelu_in, approximate='tanh')
elif checkpoint_lvl == 2:
bias1, = rest
if process_group is not None:
total_x, _ = all_gather_raw(x, process_group)
if ctx.heuristic == -1:
gelu_in = F.linear(total_x, weight1, bias1)
output1 = F.gelu(gelu_in, approximate='tanh')
else:
output1, gelu_in = fused_dense_cuda.linear_gelu_forward(
total_x.reshape(batch_dim, total_x.shape[-1]), weight1, bias1, True,
ctx.heuristic
)
grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
output1 = output1.reshape(batch_dim, output1.shape[-1])
gelu_in = gelu_in.reshape(batch_dim, gelu_in.shape[-1])
if ctx.needs_input_grad[3]:
grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(
output1, grad_output, ctx.needs_input_grad[4]
)
else:
grad_weight2 = None
grad_bias2 = grad_output if ctx.needs_input_grad[4] else None
if ctx.heuristic == -1:
# grad_gelu = matmul_dgelu(grad_output, weight2, gelu_in)
grad_output1 = F.linear(grad_output, weight2.t())
with torch.jit.fuser('fuser2'):
grad_gelu = gelu_bwd(grad_output1, gelu_in)
else:
# The cublasLt epilogue has to compute both gelu grad and bias grad, we can't
# just compute gelu grad
grad_gelu, grad_bias1 = fused_dense_cuda.bias_gelu_linear_dgrad_bgrad(
weight2, grad_output, gelu_in, ctx.heuristic
)
if not ctx.needs_input_grad[2]:
grad_bias1 = None
if ctx.needs_input_grad[0]:
if not ctx.return_residual:
grad_input = F.linear(grad_gelu, weight1.t())
else:
grad_input = torch.addmm(grad_input.reshape(batch_dim, grad_input.shape[-1]),
grad_gelu, weight1)
grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1])
if process_group is not None:
grad_input, handle_grad_input = reduce_scatter_raw(grad_input, process_group,
async_op=True)
else:
grad_input = None
if ctx.heuristic == -1:
if ctx.needs_input_grad[1]:
if process_group is not None:
handle_x.wait()
grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_wgrad(
total_x.reshape(batch_dim, total_x.shape[-1]), grad_gelu,
ctx.needs_input_grad[2]
)
else:
grad_weight1 = None
grad_bias1 = grad_gelu if ctx.needs_input_grad[2] else None
else:
if ctx.needs_input_grad[1]:
if process_group is not None:
handle_x.wait()
grad_weight1 = F.linear(grad_gelu.t(),
total_x.reshape(batch_dim, total_x.shape[-1]).t())
else:
grad_weight1 = None
if process_group is not None and ctx.needs_input_grad[0]:
handle_grad_input.wait()
return (grad_input, grad_weight1, grad_bias1, grad_weight2, grad_bias2,
None, None, None, None, None)
def fused_dense_gelu_dense_func(
x: Tensor, weight1: Tensor, weight2: Tensor, bias1: Optional[Tensor] = None,
bias2: Optional[Tensor] = None,
save_pre_act: bool = True, return_residual: bool = False,
checkpoint_lvl: int = 0, heuristic: int = 0,
process_group: Optional[ProcessGroup] = None
):
batch_dim = x.shape[:-1].numel()
dtype_eligible = (x.dtype in [torch.float16, torch.bfloat16]
or (x.dtype == torch.float32 and torch.is_autocast_enabled()))
if (x.is_cuda and weight1.is_cuda and weight2.is_cuda and (bias1 is None or bias1.is_cuda)
and (bias2 is None or bias2.is_cuda) and batch_dim <= 64 * 1024
and dtype_eligible):
return FusedDenseGeluDenseFunc.apply(
x, weight1, bias1, weight2, bias2,
save_pre_act, return_residual, checkpoint_lvl, heuristic, process_group
)
else:
assert process_group is None
gelu_in = F.linear(x, weight1, bias1)
output1 = F.gelu(gelu_in, approximate='tanh')
output2 = F.linear(output1, weight2, bias2)
return output2 if not return_residual else (output2, x)
class FusedDenseGeluDense(nn.Module):
def __init__(self, in_features, hidden_features, out_features=None, bias1=True,
bias2=True, return_residual=False, checkpoint_lvl=0, heuristic=0,
device=None, dtype=None):
"""
If process_group is not None, we're doing Tensor Parallel with sequence parallelism:
we do an all_gather of x before doing the matmul, gelu, then matmul.
Finally we do a reduce_scatter of the output.
checkpoint_lvl (increasing lvl means slower but more memory saving):
0: no recomputation in the bwd
1: recompute gelu_out in the bwd
2: recompute gelu_in and gelu_out in the bwd
heuristic:
-1: don't fuse gemm + gelu (separate kernel)
0..4: use this heuristic for the algo section in the fused gemm + gelu
For CUDA >= 11.8, you'd want heuristic=0 for both fp16 and bf16 for best perf.
For CUDA <= 11.7, you'd want heuristic=1 for fp16 and heuristic=-1 for bf16.
return_residual: whether to return the input x along with the output. This is for
performance reason: for post-norm architecture, returning the input allows us
to fuse the backward of nn.Linear with the residual connection.
"""
assert checkpoint_lvl in [0, 1, 2]
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
if out_features is None:
out_features = in_features
self.return_residual = return_residual
self.checkpoint_lvl = checkpoint_lvl
self.heuristic = heuristic
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1, **factory_kwargs)
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs)
def forward(self, x, process_group=None):
out = fused_dense_gelu_dense_func(
x, self.fc1.weight, self.fc2.weight, self.fc1.bias, self.fc2.bias,
save_pre_act=self.training, return_residual=self.return_residual,
checkpoint_lvl=self.checkpoint_lvl, heuristic=self.heuristic,
process_group=process_group
)
if self.return_residual:
out, x = out
if process_group is not None:
out = reduce_scatter(out, process_group)
return out if not self.return_residual else (out, x)
class ParallelFusedDenseGeluDense(nn.Module):
def __init__(self, in_features, hidden_features, out_features=None,
process_group: ProcessGroup = None, bias1=True, bias2=True,
checkpoint_lvl=0, heuristic=0, device=None, dtype=None):
"""
process_group is required. We're doing Tensor Parallel with sequence parallelism:
we do an all_gather of x before doing the matmul, gelu, then matmul.
Finally we do a reduce_scatter of the output.
checkpoint_lvl (increasing lvl means slower but more memory saving):
0: no recomputation in the bwd
1: recompute gelu_out in the bwd
2: recompute gelu_in and gelu_out in the bwd
heuristic:
-1: don't fuse gemm + gelu (separate kernel)
0..4: use this heuristic for the algo section in the fused gemm + gelu
For CUDA >= 11.8, you'd want heuristic=0 for both fp16 and bf16 for best perf.
For CUDA <= 11.7, you'd want heuristic=1 for fp16 and heuristic=-1 for bf16.
"""
assert checkpoint_lvl in [0, 1, 2]
assert process_group is not None
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
if out_features is None:
out_features = in_features
self.process_group = process_group
self.checkpoint_lvl = checkpoint_lvl
self.heuristic = heuristic
self.fc1 = ColumnParallelLinear(in_features, hidden_features, process_group,
bias=bias1, **factory_kwargs)
self.fc2 = RowParallelLinear(hidden_features, out_features, process_group,
bias=bias2, **factory_kwargs)
def forward(self, x):
out = fused_dense_gelu_dense_func(
x, self.fc1.weight, self.fc2.weight, self.fc1.bias, self.fc2.bias,
save_pre_act=self.training, checkpoint_lvl=self.checkpoint_lvl,
heuristic=self.heuristic, process_group=self.process_group
)
return reduce_scatter(out, self.process_group)