flash-attention/flash_attn/ops/rms_norm.py
2023-01-06 17:34:22 -08:00

59 lines
2.4 KiB
Python

# Copyright (c) 2022, Tri Dao.
# Adapted from https://github.com/NVIDIA/apex/blob/master/apex/contrib/layer_norm/layer_norm.py
import torch
from torch.nn import init
from flash_attn.ops.layer_norm import DropoutAddLayerNormFn, DropoutAddLayerNormSubsetFn
def rms_norm(x, weight, epsilon):
return DropoutAddLayerNormFn.apply(x, None, weight, None, None, None, 0.0, epsilon, False,
False, True)
def dropout_add_rms_norm(x0, x1, weight, bias, dropout_p, epsilon, rowscale=None, layerscale=None,
prenorm=False, residual_in_fp32=False, return_dropout_mask=False):
"""residual_in_fp32 only has an effect if x1 is None.
Otherwise residual dtype is x1.dtype.
"""
return DropoutAddLayerNormFn.apply(
x0, x1, weight, bias, rowscale, layerscale, dropout_p, epsilon, residual_in_fp32, prenorm,
True, return_dropout_mask
)
def dropout_add_rms_norm_subset(x0, x1, weight, bias, dropout_p, epsilon, layerscale=None,
x0_subset=None, out_subset=None, rowscale_const=1.0,
out_numrows=0, prenorm=False, residual_in_fp32=False,
return_dropout_mask=False):
"""residual_in_fp32 only has an effect if x1 is None.
Otherwise residual dtype is x1.dtype.
"""
return DropoutAddLayerNormSubsetFn.apply(
x0, x1, weight, bias, layerscale, x0_subset, out_subset, dropout_p, epsilon,
rowscale_const, out_numrows, residual_in_fp32, prenorm, True, return_dropout_mask
)
class DropoutAddRMSNorm(torch.nn.Module):
def __init__(self, hidden_size, prenorm=False, p=0.0, eps=1e-5, residual_in_fp32=False,
device=None, dtype=None):
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.prenorm = prenorm
self.p = p
self.epsilon = eps
self.residual_in_fp32 = residual_in_fp32
self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
init.ones_(self.weight)
def forward(self, x0, x1=None):
return dropout_add_rms_norm(x0, x1, self.weight, None,
self.p if self.training else 0.0, self.epsilon,
prenorm=self.prenorm, residual_in_fp32=self.residual_in_fp32)