135 lines
5.8 KiB
Python
135 lines
5.8 KiB
Python
# Adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from einops import rearrange, repeat
|
|
|
|
|
|
class IndexFirstAxis(torch.autograd.Function):
|
|
|
|
@staticmethod
|
|
def forward(ctx, input, indices):
|
|
ctx.save_for_backward(indices)
|
|
assert input.ndim >= 2
|
|
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
|
|
second_dim = np.prod(other_shape)
|
|
# TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
|
|
# return input[indices]
|
|
return torch.gather(rearrange(input, 'b ... -> b (...)'), 0,
|
|
repeat(indices, 'z -> z d', d=second_dim)).reshape(-1, *other_shape)
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
indices, = ctx.saved_tensors
|
|
assert grad_output.ndim >= 2
|
|
other_shape = grad_output.shape[1:]
|
|
grad_output = rearrange(grad_output, 'b ... -> b (...)')
|
|
grad_input = torch.zeros([ctx.first_axis_dim, grad_output.shape[1]],
|
|
device=grad_output.device, dtype=grad_output.dtype)
|
|
# TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
|
|
# grad_input[indices] = grad_output
|
|
grad_input.scatter_(0, repeat(indices, 'z -> z d', d=grad_output.shape[1]), grad_output)
|
|
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
|
|
|
|
|
|
index_first_axis = IndexFirstAxis.apply
|
|
|
|
|
|
class IndexPutFirstAxis(torch.autograd.Function):
|
|
|
|
@staticmethod
|
|
def forward(ctx, values, indices, first_axis_dim):
|
|
ctx.save_for_backward(indices)
|
|
assert indices.ndim == 1
|
|
assert values.ndim >= 2
|
|
output = torch.zeros(first_axis_dim, *values.shape[1:], device=values.device,
|
|
dtype=values.dtype)
|
|
# TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
|
|
output[indices] = values
|
|
# output.scatter_(0, repeat(indices, 'z -> z d', d=values.shape[1]), values)
|
|
return output
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
indices, = ctx.saved_tensors
|
|
# TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
|
|
grad_values = grad_output[indices]
|
|
# grad_values = torch.gather(grad_output, 0, repeat(indices, 'z -> z d', d=grad_output.shape[1]))
|
|
return grad_values, None, None
|
|
|
|
|
|
index_put_first_axis = IndexPutFirstAxis.apply
|
|
|
|
|
|
class IndexFirstAxisResidual(torch.autograd.Function):
|
|
|
|
@staticmethod
|
|
def forward(ctx, input, indices):
|
|
ctx.save_for_backward(indices)
|
|
assert input.ndim >= 2
|
|
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
|
|
second_dim = np.prod(other_shape)
|
|
# TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
|
|
output = input[indices]
|
|
# We don't want to reshape input (b ... -> b (...)) since it could change the channel_last
|
|
# memory format to channel_first. In other words, input might not be contiguous.
|
|
# If we don't detach, Pytorch complains about output being a view and is being modified inplace
|
|
return output, input.detach()
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output, grad_residual):
|
|
indices, = ctx.saved_tensors
|
|
assert grad_output.ndim >= 2
|
|
other_shape = grad_output.shape[1:]
|
|
assert grad_residual.shape[1:] == other_shape
|
|
grad_input = grad_residual
|
|
# grad_input[indices] += grad_output
|
|
indices = indices.reshape(indices.shape[0], *((1,) * (grad_output.ndim - 1)))
|
|
indices = indices.expand_as(grad_output)
|
|
grad_input.scatter_add_(0, indices, grad_output)
|
|
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
|
|
|
|
|
|
index_first_axis_residual = IndexFirstAxisResidual.apply
|
|
|
|
|
|
def unpad_input(hidden_states, attention_mask):
|
|
"""
|
|
Arguments:
|
|
hidden_states: (batch, seqlen, ...)
|
|
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
|
|
Return:
|
|
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
|
cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
|
|
max_seqlen_in_batch: int
|
|
"""
|
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
|
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
|
# TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
|
|
# bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
|
|
# times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
|
|
# index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
|
|
# so we write custom forward and backward to make it a bit faster.
|
|
return (index_first_axis(rearrange(hidden_states, 'b s ... -> (b s) ...'), indices), indices,
|
|
cu_seqlens, max_seqlen_in_batch)
|
|
|
|
|
|
def pad_input(hidden_states, indices, batch, seqlen):
|
|
"""
|
|
Arguments:
|
|
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
|
indices: (total_nnz)
|
|
Return:
|
|
hidden_states: (batch, seqlen, ...)
|
|
"""
|
|
dim = hidden_states.shape[-1]
|
|
# output = torch.zeros((batch * seqlen), dim, device=hidden_states.device, dtype=hidden_states.dtype)
|
|
# output[indices] = hidden_states
|
|
output = index_put_first_axis(hidden_states, indices, batch * seqlen)
|
|
return rearrange(output, '(b s) ... -> b s ...', b=batch)
|