188 lines
7.4 KiB
Python
188 lines
7.4 KiB
Python
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py
|
|
import sys
|
|
import warnings
|
|
import os
|
|
from pathlib import Path
|
|
from packaging.version import parse, Version
|
|
|
|
from setuptools import setup, find_packages
|
|
import subprocess
|
|
|
|
import torch
|
|
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME
|
|
|
|
|
|
with open("README.md", "r", encoding="utf-8") as fh:
|
|
long_description = fh.read()
|
|
|
|
|
|
# ninja build does not work unless include_dirs are abs path
|
|
this_dir = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
|
|
def get_cuda_bare_metal_version(cuda_dir):
|
|
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
|
|
output = raw_output.split()
|
|
release_idx = output.index("release") + 1
|
|
bare_metal_version = parse(output[release_idx].split(",")[0])
|
|
|
|
return raw_output, bare_metal_version
|
|
|
|
|
|
def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
|
|
raw_output, bare_metal_version = get_cuda_bare_metal_version(cuda_dir)
|
|
torch_binary_version = parse(torch.version.cuda)
|
|
|
|
print("\nCompiling cuda extensions with")
|
|
print(raw_output + "from " + cuda_dir + "/bin\n")
|
|
|
|
if (bare_metal_version != torch_binary_version):
|
|
raise RuntimeError(
|
|
"Cuda extensions are being compiled with a version of Cuda that does "
|
|
"not match the version used to compile Pytorch binaries. "
|
|
"Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda)
|
|
+ "In some cases, a minor-version mismatch will not cause later errors: "
|
|
"https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. "
|
|
"You can try commenting out this check (at your own risk)."
|
|
)
|
|
|
|
|
|
def raise_if_cuda_home_none(global_option: str) -> None:
|
|
if CUDA_HOME is not None:
|
|
return
|
|
raise RuntimeError(
|
|
f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? "
|
|
"If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
|
|
"only images whose names contain 'devel' will provide nvcc."
|
|
)
|
|
|
|
|
|
def append_nvcc_threads(nvcc_extra_args):
|
|
_, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
|
|
if bare_metal_version >= Version("11.2"):
|
|
return nvcc_extra_args + ["--threads", "4"]
|
|
return nvcc_extra_args
|
|
|
|
|
|
if not torch.cuda.is_available():
|
|
# https://github.com/NVIDIA/apex/issues/486
|
|
# Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(),
|
|
# which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command).
|
|
print(
|
|
"\nWarning: Torch did not find available GPUs on this system.\n",
|
|
"If your intention is to cross-compile, this is not an error.\n"
|
|
"By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n"
|
|
"Volta (compute capability 7.0), Turing (compute capability 7.5),\n"
|
|
"and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n"
|
|
"If you wish to cross-compile for a single specific architecture,\n"
|
|
'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n',
|
|
)
|
|
if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None and CUDA_HOME is not None:
|
|
_, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
|
|
if bare_metal_version >= Version("11.8"):
|
|
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6;9.0"
|
|
elif bare_metal_version >= Version("11.1"):
|
|
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6"
|
|
elif bare_metal_version == Version("11.0"):
|
|
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0"
|
|
else:
|
|
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5"
|
|
|
|
|
|
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
|
|
TORCH_MAJOR = int(torch.__version__.split(".")[0])
|
|
TORCH_MINOR = int(torch.__version__.split(".")[1])
|
|
|
|
cmdclass = {}
|
|
ext_modules = []
|
|
|
|
# Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h
|
|
# See https://github.com/pytorch/pytorch/pull/70650
|
|
generator_flag = []
|
|
torch_dir = torch.__path__[0]
|
|
if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")):
|
|
generator_flag = ["-DOLD_GENERATOR_PATH"]
|
|
|
|
raise_if_cuda_home_none("flash_attn")
|
|
# Check, if CUDA11 is installed for compute capability 8.0
|
|
cc_flag = []
|
|
_, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
|
|
if bare_metal_version < Version("11.0"):
|
|
raise RuntimeError("FlashAttention is only supported on CUDA 11 and above")
|
|
cc_flag.append("-gencode")
|
|
cc_flag.append("arch=compute_75,code=sm_75")
|
|
cc_flag.append("-gencode")
|
|
cc_flag.append("arch=compute_80,code=sm_80")
|
|
if bare_metal_version >= Version("11.8"):
|
|
cc_flag.append("-gencode")
|
|
cc_flag.append("arch=compute_90,code=sm_90")
|
|
|
|
subprocess.run(["git", "submodule", "update", "--init", "csrc/flash_attn/cutlass"])
|
|
ext_modules.append(
|
|
CUDAExtension(
|
|
name="flash_attn_cuda",
|
|
sources=[
|
|
"csrc/flash_attn/fmha_api.cpp",
|
|
"csrc/flash_attn/src/fmha_fwd_hdim32.cu",
|
|
"csrc/flash_attn/src/fmha_fwd_hdim64.cu",
|
|
"csrc/flash_attn/src/fmha_fwd_hdim128.cu",
|
|
"csrc/flash_attn/src/fmha_bwd_hdim32.cu",
|
|
"csrc/flash_attn/src/fmha_bwd_hdim64.cu",
|
|
"csrc/flash_attn/src/fmha_bwd_hdim128.cu",
|
|
"csrc/flash_attn/src/fmha_block_fprop_fp16_kernel.sm80.cu",
|
|
"csrc/flash_attn/src/fmha_block_dgrad_fp16_kernel_loop.sm80.cu",
|
|
],
|
|
extra_compile_args={
|
|
"cxx": ["-O3", "-std=c++17"] + generator_flag,
|
|
"nvcc": append_nvcc_threads(
|
|
[
|
|
"-O3",
|
|
"-std=c++17",
|
|
"-U__CUDA_NO_HALF_OPERATORS__",
|
|
"-U__CUDA_NO_HALF_CONVERSIONS__",
|
|
"-U__CUDA_NO_HALF2_OPERATORS__",
|
|
"-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
|
|
"--expt-relaxed-constexpr",
|
|
"--expt-extended-lambda",
|
|
"--use_fast_math",
|
|
"--ptxas-options=-v",
|
|
"-lineinfo"
|
|
]
|
|
+ generator_flag
|
|
+ cc_flag
|
|
),
|
|
},
|
|
include_dirs=[
|
|
Path(this_dir) / 'csrc' / 'flash_attn',
|
|
Path(this_dir) / 'csrc' / 'flash_attn' / 'src',
|
|
Path(this_dir) / 'csrc' / 'flash_attn' / 'cutlass' / 'include',
|
|
],
|
|
)
|
|
)
|
|
|
|
setup(
|
|
name="flash_attn",
|
|
version="1.0.0",
|
|
packages=find_packages(
|
|
exclude=("build", "csrc", "include", "tests", "dist", "docs", "benchmarks", "flash_attn.egg-info",)
|
|
),
|
|
author="Tri Dao",
|
|
author_email="trid@stanford.edu",
|
|
description="Flash Attention: Fast and Memory-Efficient Exact Attention",
|
|
long_description=long_description,
|
|
long_description_content_type="text/markdown",
|
|
url="https://github.com/HazyResearch/flash-attention",
|
|
classifiers=[
|
|
"Programming Language :: Python :: 3",
|
|
"License :: OSI Approved :: BSD License",
|
|
"Operating System :: Unix",
|
|
],
|
|
ext_modules=ext_modules,
|
|
cmdclass={"build_ext": BuildExtension} if ext_modules else {},
|
|
python_requires=">=3.7",
|
|
install_requires=[
|
|
"torch",
|
|
"einops",
|
|
],
|
|
)
|