flash-attention/flash_attn/layers/rotary.py

203 lines
8.7 KiB
Python

# Inspired by https://github.com/facebookresearch/xformers/blob/main/xformers/components/positional_embedding/rotary.py
from typing import Tuple
import math
import torch
from einops import rearrange, repeat
import rotary_emb
def rotate_half(x):
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_emb_torch(x, cos, sin):
"""
x: (batch_size, seqlen, nheads, headdim)
cos, sin: (seqlen, rotary_dim / 2)
"""
rotary_dim = cos.shape[-1] * 2
assert rotary_dim <= x.shape[-1]
cos = repeat(cos, 's d -> s 1 (2 d)')
sin = repeat(sin, 's d -> s 1 (2 d)')
return torch.cat([x[..., :rotary_dim] * cos + rotate_half(x[..., :rotary_dim]) * sin,
x[..., rotary_dim:]], dim=-1)
class ApplyRotaryEmb(torch.autograd.Function):
@staticmethod
def forward(ctx, x, cos, sin, inplace=False):
"""
x: (batch_size, seqlen, nheads, headdim)
cos, sin: (seqlen, rotary_dim / 2)
rotary_dim must be <= headdim
Apply rotary embedding to the first rotary_dim of x.
"""
batch, seqlen, nheads, headdim = x.shape
rotary_seqlen, rotary_dim = cos.shape
rotary_dim *= 2
assert rotary_dim <= headdim
assert seqlen <= rotary_seqlen
assert sin.shape == (rotary_seqlen, rotary_dim // 2)
x1, x2 = x[..., :rotary_dim].chunk(2, dim=-1)
out = torch.empty_like(x) if not inplace else x
o1, o2 = out[..., :rotary_dim].chunk(2, dim=-1) if not inplace else (x1, x2)
rotary_emb.apply_rotary(x1, x2, rearrange(cos[:seqlen], 's d -> s 1 d'),
rearrange(sin[:seqlen], 's d -> s 1 d'), o1, o2, False)
if not inplace and rotary_dim < headdim:
out[..., rotary_dim:].copy_(x[..., rotary_dim:])
ctx.save_for_backward(cos, sin)
ctx.inplace = inplace
return out if not inplace else x
@staticmethod
def backward(ctx, do):
cos, sin = ctx.saved_tensors
_, seqlen, _, headdim = do.shape
rotary_dim = cos.shape[-1]
rotary_dim *= 2
inplace = ctx.inplace
do1, do2 = do[..., :rotary_dim].chunk(2, dim=-1)
dx = torch.empty_like(do) if not inplace else do
dx1, dx2 = dx[..., :rotary_dim].chunk(2, dim=-1) if not inplace else (do1, do2)
rotary_emb.apply_rotary(do1, do2, rearrange(cos[:seqlen], 's d -> s 1 d'),
rearrange(sin[:seqlen], 's d -> s 1 d'), dx1, dx2, True)
if not inplace and rotary_dim < headdim:
dx[..., rotary_dim:].copy_(do[..., rotary_dim:])
return dx, None, None, None
apply_rotary_emb_func = ApplyRotaryEmb.apply
class ApplyRotaryEmbQKV_(torch.autograd.Function):
@staticmethod
def forward(ctx, qkv, cos, sin, cos_k=None, sin_k=None):
"""
qkv: (batch_size, seqlen, 3, nheads, headdim)
cos, sin: (seqlen, rotary_dim / 2)
cos_k, sin_k: (seqlen, rotary_dim / 2), optional
rotary_dim must be <= headdim
Apply rotary embedding *inplace* to the first rotary_dim of q and k.
"""
batch, seqlen, three, nheads, headdim = qkv.shape
assert three == 3
rotary_seqlen, rotary_dim = cos.shape
rotary_dim *= 2
assert rotary_dim <= headdim
assert seqlen <= rotary_seqlen
cos_k = cos if cos_k is None else cos_k
sin_k = sin if sin_k is None else sin_k
assert sin.shape == cos_k.shape == sin_k.shape == (rotary_seqlen, rotary_dim // 2)
q1, q2 = qkv[:, :, 0, :, :rotary_dim].chunk(2, dim=-1)
rotary_emb.apply_rotary(q1, q2, rearrange(cos[:seqlen], 's d -> s 1 d'),
rearrange(sin[:seqlen], 's d -> s 1 d'), q1, q2, False)
k1, k2 = qkv[:, :, 1, :, :rotary_dim].chunk(2, dim=-1)
rotary_emb.apply_rotary(k1, k2, rearrange(cos_k[:seqlen], 's d -> s 1 d'),
rearrange(sin_k[:seqlen], 's d -> s 1 d'), k1, k2, False)
ctx.save_for_backward(cos, sin, cos_k, sin_k)
return qkv
@staticmethod
def backward(ctx, dqkv):
cos, sin, cos_k, sin_k = ctx.saved_tensors
_, seqlen, _, _, headdim = dqkv.shape
rotary_dim = cos.shape[-1]
rotary_dim *= 2
dq1, dq2 = dqkv[:, :, 0, :, :rotary_dim].chunk(2, dim=-1)
rotary_emb.apply_rotary(dq1, dq2, rearrange(cos[:seqlen], 's d -> s 1 d'),
rearrange(sin[:seqlen], 's d -> s 1 d'), dq1, dq2, True)
dk1, dk2 = dqkv[:, :, 1, :, :rotary_dim].chunk(2, dim=-1)
rotary_emb.apply_rotary(dk1, dk2, rearrange(cos_k[:seqlen], 's d -> s 1 d'),
rearrange(sin_k[:seqlen], 's d -> s 1 d'), dk1, dk2, True)
return dqkv, None, None, None, None
apply_rotary_emb_qkv_ = ApplyRotaryEmbQKV_.apply
class RotaryEmbedding(torch.nn.Module):
"""
The rotary position embeddings from RoFormer_ (Su et. al).
A crucial insight from the method is that the query and keys are
transformed by rotation matrices which depend on the relative positions.
Other implementations are available in the Rotary Transformer repo_ and in
GPT-NeoX_, GPT-NeoX was an inspiration
.. _RoFormer: https://arxiv.org/abs/2104.09864
.. _repo: https://github.com/ZhuiyiTechnology/roformer
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
If scale_base > 0, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554).
A recommended value for scale_base is 512: https://github.com/HazyResearch/flash-attention/issues/96
Reference: https://github.com/sunyt32/torchscale/blob/main/torchscale/component/xpos_relative_position.py
"""
def __init__(self, dim: int, base=10000, scale_base=0, device=None):
"""
"""
super().__init__()
# Generate and save the inverse frequency buffer (non trainable)
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device,
dtype=torch.float32) / dim))
self.register_buffer("inv_freq", inv_freq)
self.scale_base = scale_base
scale = ((torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim)
/ (1.4 * dim) if scale_base > 0 else None)
self.register_buffer("scale", scale)
self._seq_len_cached = 0
self._cos_cached = None
self._sin_cached = None
self._cos_k_cached = None
self._sin_k_cached = None
def _update_cos_sin_cache(self, x, seqlen_offset=0):
"""x: (batch, seqlen, nheads, headdim) or (batch, seqlen, 3, nheads, headdim)
"""
seqlen = x.shape[1] + seqlen_offset
# Reset the tables if the sequence length has changed,
# or if we're on a new device (possibly due to tracing for instance)
if (seqlen > self._seq_len_cached or self._cos_cached.device != x.device
or self._cos_cached.dtype != x.dtype):
self._seq_len_cached = seqlen
t = torch.arange(seqlen, device=x.device, dtype=self.inv_freq.dtype)
# Don't do einsum, it converts fp32 to fp16
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
if self.scale is None:
self._cos_cached = torch.cos(freqs).to(x.dtype)
self._sin_cached = torch.sin(freqs).to(x.dtype)
else:
power = ((torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
- seqlen // 2) / self.scale_base)
scale = self.scale.to(device=power.device) ** rearrange(power, 's -> s 1')
# We want the multiplication by scale to happen in fp32
self._cos_cached = (torch.cos(freqs) * scale).to(x.dtype)
self._sin_cached = (torch.sin(freqs) * scale).to(x.dtype)
self._cos_k_cached = (torch.cos(freqs) / scale).to(x.dtype)
self._sin_k_cached = (torch.sin(freqs) / scale).to(x.dtype)
def forward(self, qkv: torch.Tensor, seqlen_offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
"""
seqlen_offset: can be used in generation where the qkv being passed in is only the last
token in the batch.
"""
self._update_cos_sin_cache(qkv, seqlen_offset)
if self.scale is None:
return apply_rotary_emb_qkv_(
qkv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:]
)
else:
return apply_rotary_emb_qkv_(
qkv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:],
self._cos_k_cached[seqlen_offset:], self._sin_k_cached[seqlen_offset:]
)