flash-attention/csrc/flash_attn_ck/mha_varlen_bwd.cpp
rocking 88d1657a14
[AMD ROCm] Fix KVcache bug and improve performance (#1328)
* update ck

* update ck

* update ck again

* update ck

* use pointer as seed and offset

* update CK

* Remove useless "else"

* Fix page-attn block table read out-of-bound

---------

Co-authored-by: Po Yen, Chen <PoYen.Chen@amd.com>
2024-11-12 11:32:11 -08:00

432 lines
18 KiB
C++

/******************************************************************************
* Copyright (c) 2024, Tri Dao.
******************************************************************************/
#include "flash_common.hpp"
#include "fmha_bwd.hpp"
#include "mask.hpp"
fmha_bwd_traits get_ck_fmha_varlen_bwd_traits(const mask_info &mask,
std::string dtype,
int head_size,
bool has_dropout,
bool enable_alibi,
bool deterministic)
{
return fmha_bwd_traits{head_size,
head_size,
dtype,
true, // is_group_mode
mask.type,
enable_alibi ? bias_enum::alibi : bias_enum::no_bias,
false, // has_dbias
has_dropout,
false, // s_randval
deterministic};
}
fmha_bwd_args get_ck_fmha_varlen_bwd_args(const mask_info &mask,
// sizes
const int b,
const int max_seqlen_q,
const int max_seqlen_k,
const int h,
const int h_k,
const int hdim,
// device pointers
const at::Tensor q,
const at::Tensor k,
const at::Tensor v,
const at::Tensor seqlens_q,
const at::Tensor seqlens_k,
c10::optional<at::Tensor> &alibi_slopes_,
const at::Tensor out,
const at::Tensor softmax_lse,
const at::Tensor dout,
at::Tensor dq_acc,
at::Tensor d,
at::Tensor dq,
at::Tensor dk,
at::Tensor dv,
float softmax_scale,
float p_dropout,
std::pair<uint64_t*, uint64_t*> drop_seed_offset)
{
ck_tile::index_t total_q = q.size(0);
ck_tile::index_t total_k = k.size(0);
// q: (total_q, nheads, hdim)
ck_tile::index_t batch_stride_q = 0;
ck_tile::index_t stride_q = q.stride(0);
ck_tile::index_t nhead_stride_q = q.stride(1);
// k: (total_k, nheads_k, hdim)
ck_tile::index_t batch_stride_k = 0;
ck_tile::index_t stride_k = k.stride(0);
ck_tile::index_t nhead_stride_k = k.stride(1);
// v: (total_k, nheads_k, hdim)
ck_tile::index_t batch_stride_v = 0;
ck_tile::index_t stride_v = v.stride(0);
ck_tile::index_t nhead_stride_v = v.stride(1);
// o: (total_q, nheads, hdim)
ck_tile::index_t batch_stride_o = 0;
ck_tile::index_t stride_o = out.stride(0);
ck_tile::index_t nhead_stride_o = out.stride(1);
// lse: (nheads, total_q)
ck_tile::index_t batch_stride_lse = 0;
ck_tile::index_t nhead_stride_lse = softmax_lse.stride(0);
// do: (total_q, nheads, hdim)
ck_tile::index_t batch_stride_do = 0;
ck_tile::index_t stride_do = dout.stride(0);
ck_tile::index_t nhead_stride_do = dout.stride(1);
// d: (batch_size, nheads, max_seqlen_q)
// CK assume d share the same stride with lse
// dq: (total_q, nheads, hdim)
ck_tile::index_t batch_stride_dq = 0;
ck_tile::index_t stride_dq = dq.stride(0);
ck_tile::index_t nhead_stride_dq = dq.stride(1);
// dk_expanded: (total_k, nheads, hdim)
ck_tile::index_t batch_stride_dk = 0;
ck_tile::index_t stride_dk = dk.stride(0);
ck_tile::index_t nhead_stride_dk = dk.stride(1);
// dv_expanded: (total_k, nheads, hdim)
ck_tile::index_t batch_stride_dv = 0;
ck_tile::index_t stride_dv = dv.stride(0);
ck_tile::index_t nhead_stride_dv = dv.stride(1);
// dq_acc: (split, total_q, nheads, hdim)
ck_tile::index_t split_stride_dq_acc = dq_acc.stride(0);
ck_tile::index_t batch_stride_dq_acc = 0;
ck_tile::index_t stride_dq_acc = dq_acc.stride(1);
ck_tile::index_t nhead_stride_dq_acc = dq_acc.stride(2);
float p_undrop = 1.0 - p_dropout;
void *alibi_slopes_ptr = nullptr;
ck_tile::index_t stride_alibi_slopes = 0;
if (alibi_slopes_.has_value()) {
auto alibi_slopes = alibi_slopes_.value();
CHECK_DEVICE(alibi_slopes);
TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension");
TORCH_CHECK(alibi_slopes.sizes() == torch::IntArrayRef({h}) || alibi_slopes.sizes() == torch::IntArrayRef({b, h}));
alibi_slopes_ptr = alibi_slopes.data_ptr();
// alibi_slopes:(batch_size, nheads) or (nhead)
stride_alibi_slopes = alibi_slopes.dim() == 2 ? alibi_slopes.stride(0) : 0;
}
return fmha_bwd_args{q.data_ptr(),
k.data_ptr(),
v.data_ptr(),
alibi_slopes_ptr, // bias
out.data_ptr(),
softmax_lse.data_ptr(),
dout.data_ptr(),
d.data_ptr(),
nullptr, // rand_val
dq.data_ptr(),
dk.data_ptr(),
dv.data_ptr(),
nullptr, // dbias
dq_acc.data_ptr(), // dq_acc
seqlens_q.data_ptr(), // seqstart_q
seqlens_k.data_ptr(), // seqstart_k
nullptr, // seqlen_k_ptr
total_q,
total_k,
b,
max_seqlen_q, // max_seqlen_q
max_seqlen_k, // max_seqlen_k
hdim, // hdim_q
hdim, // hdim_v
h, // nhead
h_k, // nhead_k
softmax_scale,
stride_q,
stride_k,
stride_v,
stride_alibi_slopes,
stride_o,
0, // stride_randval
stride_do,
stride_dq_acc,
stride_dq,
stride_dk,
stride_dv,
0, // stride_dbias, FA without bias
nhead_stride_q,
nhead_stride_k,
nhead_stride_v,
0, // nhead_stride_bias, FA without bias
nhead_stride_o,
0, // nhead_stride_randval
nhead_stride_do,
nhead_stride_lse,
nhead_stride_dq_acc,
nhead_stride_dq,
nhead_stride_dk,
nhead_stride_dv,
0, // nhead_stride_dbias, FA without dbias
batch_stride_q,
batch_stride_k,
batch_stride_v,
0 , // batch_stride_bias, FA without bias
batch_stride_o,
0, // batch_stride_randval
batch_stride_do,
batch_stride_lse,
batch_stride_dq_acc,
batch_stride_dq,
batch_stride_dk,
batch_stride_dv,
0 , // batch_stride_dbias, FA without dbias
split_stride_dq_acc,
mask.left,
mask.right,
static_cast<ck_tile::index_t>(mask.type),
p_dropout,
p_undrop,
drop_seed_offset};
}
std::vector<at::Tensor>
mha_varlen_bwd(const at::Tensor &dout, // total_q x num_heads x head_size
const at::Tensor &q, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
const at::Tensor &k, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
const at::Tensor &v, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
const at::Tensor &out, // total_q x num_heads x head_size
const at::Tensor &softmax_lse, // b x h x s softmax logsumexp
c10::optional<at::Tensor> &dq_, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
c10::optional<at::Tensor> &dk_, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
c10::optional<at::Tensor> &dv_, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
const at::Tensor &cu_seqlens_q, // b+1
const at::Tensor &cu_seqlens_k, // b+1
c10::optional<at::Tensor> &alibi_slopes_, // num_heads or b x num_heads
const int max_seqlen_q,
const int max_seqlen_k, // max sequence length to choose the kernel
const float p_dropout, // probability to drop
const float softmax_scale,
const bool zero_tensors,
const bool is_causal,
int window_size_left,
int window_size_right,
const float /*softcap*/,
const bool deterministic,
c10::optional<at::Generator> gen_,
c10::optional<at::Tensor> &rng_state_)
{
#ifdef FLASHATTENTION_DISABLE_BACKWARD
TORCH_CHECK(false, "This flash attention build does not support backward.");
#endif
if (is_causal) { window_size_right = 0; }
bool is_dropout = p_dropout > 0.0;
auto stream = at::cuda::getCurrentCUDAStream().stream();
auto q_dtype = q.dtype();
TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
"FlashAttention only support fp16 and bf16 data type");
TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
TORCH_CHECK(out.dtype() == q_dtype, "query and out must have the same dtype");
TORCH_CHECK(dout.dtype() == q_dtype, "query and dout must have the same dtype");
TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype int32");
TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype int32");
std::string q_dtype_str = q_dtype == torch::kFloat16 ? "fp16" : "bf16";
CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse);
CHECK_DEVICE(cu_seqlens_q); CHECK_DEVICE(cu_seqlens_k);
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension");
TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension");
CHECK_CONTIGUOUS(cu_seqlens_q);
CHECK_CONTIGUOUS(cu_seqlens_k);
const auto sizes = q.sizes();
const int total_q = sizes[0];
const int batch_size = cu_seqlens_q.numel() - 1;
const int num_heads = sizes[1];
const int head_size = sizes[2];
const int total_k = k.size(0);
const int num_heads_k = k.size(1);
TORCH_CHECK(batch_size > 0, "batch size must be positive");
TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8");
TORCH_CHECK(head_size <= 256, "CK FlashAttention backward only supports head dimension at most 256");
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
if (window_size_left >= max_seqlen_k) { window_size_left = -1; }
if (window_size_right >= max_seqlen_k) { window_size_right = -1; }
mask_info mask;
if (is_causal) {
std::string mask_identify = "b:" + std::to_string(window_size_left) + "," + "0";
mask = mask_info::decode(mask_identify, max_seqlen_q, max_seqlen_k); // casual
}
else if (window_size_left == -1 && window_size_right == -1) {
mask = mask_info::decode("0", max_seqlen_q, max_seqlen_k); // no mask
}
else {
// Local is the more general case where window_size_right >= 0 or window_size_left >= 0.
std::string mask_identify = "b:" + std::to_string(window_size_left) + "," + std::to_string(window_size_right);
mask = mask_info::decode(mask_identify, max_seqlen_q, max_seqlen_k); // local
}
// q, k, v, out had been padded in mha_fwd
// dq_, dk_, dv_ are also padded tensor
CHECK_SHAPE(q, total_q, num_heads, head_size);
CHECK_SHAPE(k, total_k, num_heads_k, head_size);
CHECK_SHAPE(v, total_k, num_heads_k, head_size);
CHECK_SHAPE(out, total_q, num_heads, head_size);
CHECK_SHAPE(dout, total_q, num_heads, head_size);
CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
CHECK_SHAPE(cu_seqlens_k, batch_size + 1);
at::Tensor dq, dk, dv;
if (dq_.has_value()) {
dq = dq_.value();
TORCH_CHECK(dq.dtype() == q_dtype, "dq must have the same dtype as q");
CHECK_DEVICE(dq);
TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension");
CHECK_SHAPE(dq, total_q, num_heads, head_size);
} else {
dq = torch::empty_like(q);
}
if (dk_.has_value()) {
dk = dk_.value();
TORCH_CHECK(dk.dtype() == q_dtype, "dk must have the same dtype as q");
CHECK_DEVICE(dk);
TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension");
CHECK_SHAPE(dk, total_k, num_heads_k, head_size);
} else {
dk = torch::empty_like(k);
}
if (dv_.has_value()) {
dv = dv_.value();
TORCH_CHECK(dv.dtype() == q_dtype, "dv must have the same dtype as q");
CHECK_DEVICE(dv);
TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension");
CHECK_SHAPE(dv, total_k, num_heads_k, head_size);
} else {
dv = torch::empty_like(v);
}
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)q.get_device()};
auto opts = q.options();
auto softmax_d = torch::empty({batch_size, num_heads, max_seqlen_q}, opts.dtype(at::kFloat));
at::Tensor dq_accum;
if (!deterministic) {
dq_accum = torch::zeros({1, total_q, num_heads, head_size}, opts.dtype(at::kFloat));
} else {
const ck_tile::index_t kN0 = head_size <= 128 ? 128 : 64;
const ck_tile::index_t nsplits = ck_tile::integer_divide_ceil(max_seqlen_k, kN0);
dq_accum = torch::zeros({nsplits, total_q, num_heads, head_size}, opts.dtype(at::kFloat));
}
at::Tensor dk_expanded, dv_expanded;
if (num_heads_k != num_heads) { // MQA / GQA
dk_expanded = torch::empty({total_k, num_heads, head_size}, opts);
dv_expanded = torch::empty({total_k, num_heads, head_size}, opts);
} else {
dk_expanded = dk;
dv_expanded = dv;
}
if(zero_tensors) {
dq.zero_();
dk_expanded.zero_();
dv_expanded.zero_();
softmax_d.zero_();
}
auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
gen_, at::cuda::detail::getDefaultCUDAGenerator());
int64_t counter_offset = batch_size * num_heads * ck_tile::get_warp_size();
at::Tensor rng_state;
if (rng_state_.has_value()) {
rng_state = rng_state_.value();
} else if(is_dropout) {
rng_state = torch::empty({2}, opts.dtype(torch::kInt64));
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(gen->mutex_);
auto philox_args = gen->philox_cuda_state(counter_offset);
hipLaunchKernelGGL(
flash::ParsePhiloxCudaState, dim3(1), dim3(64), 0, 0,
philox_args, reinterpret_cast<uint64_t*>(rng_state.data_ptr()));
} else {
rng_state = torch::empty({2}, opts.dtype(torch::kInt64));
}
if (max_seqlen_q > 0) {
auto rng_state_ptr = reinterpret_cast<uint64_t*>(rng_state.data_ptr());
auto drop_seed_offset = std::make_pair(rng_state_ptr, rng_state_ptr + 1);
ck_tile::stream_config stream_config{stream};
auto traits =
get_ck_fmha_varlen_bwd_traits(mask, q_dtype_str, head_size, is_dropout, alibi_slopes_.has_value(), deterministic);
auto args =
get_ck_fmha_varlen_bwd_args(
mask,
batch_size,
max_seqlen_q,
max_seqlen_k,
num_heads,
num_heads_k,
head_size,
q,
k,
v,
cu_seqlens_q,
cu_seqlens_k,
alibi_slopes_,
out,
softmax_lse,
dout,
dq_accum,
softmax_d,
dq,
dk_expanded,
dv_expanded,
softmax_scale,
p_dropout,
drop_seed_offset);
float t = fmha_bwd(traits, args, stream_config);
TORCH_CHECK(t >= 0, "invalid argument for fmha_bwd");
} else {
// If seqlen_q == 0, then we have an empty tensor. We need to set the output to 0.
dk_expanded.zero_();
dv_expanded.zero_();
softmax_d.zero_();
}
// For MQA/GQA we need to sum dK and dV across the groups
if (num_heads_k != num_heads) {
at::sum_out(dk, at::reshape(dk_expanded, {total_k, num_heads_k, num_heads / num_heads_k, head_size}), {2});
at::sum_out(dv, at::reshape(dv_expanded, {total_k, num_heads_k, num_heads / num_heads_k, head_size}), {2});
}
return { dq, dk, dv, softmax_d };
}