183 lines
5.3 KiB
Python
183 lines
5.3 KiB
Python
from typing import Union
|
|
|
|
import torch
|
|
|
|
import triton
|
|
import triton.language as tl
|
|
|
|
|
|
# @triton.autotune(
|
|
# configs=[
|
|
# triton.Config({"BLOCK_M": 2}),
|
|
# triton.Config({"BLOCK_M": 4}),
|
|
# triton.Config({"BLOCK_M": 8}),
|
|
# triton.Config({"BLOCK_M": 16}),
|
|
# ],
|
|
# key=["CACHE_KEY_SEQLEN", "BLOCK_K", "INTERLEAVED"]
|
|
# )
|
|
@triton.jit
|
|
def rotary_kernel(
|
|
OUT, # Pointers to matrices
|
|
X,
|
|
COS,
|
|
SIN,
|
|
SEQLEN_OFFSETS, # this could be int or a pointer
|
|
# Matrix dimensions
|
|
seqlen,
|
|
nheads,
|
|
rotary_dim,
|
|
seqlen_ro,
|
|
CACHE_KEY_SEQLEN,
|
|
# strides
|
|
stride_out_batch,
|
|
stride_out_seqlen,
|
|
stride_out_nheads,
|
|
stride_out_headdim,
|
|
stride_x_batch,
|
|
stride_x_seqlen,
|
|
stride_x_nheads,
|
|
stride_x_headdim,
|
|
# Meta-parameters
|
|
BLOCK_K: tl.constexpr,
|
|
IS_SEQLEN_OFFSETS_TENSOR: tl.constexpr,
|
|
INTERLEAVED: tl.constexpr,
|
|
CONJUGATE: tl.constexpr,
|
|
BLOCK_M: tl.constexpr,
|
|
):
|
|
pid_m = tl.program_id(axis=0)
|
|
pid_batch = tl.program_id(axis=1)
|
|
pid_head = tl.program_id(axis=2)
|
|
rotary_dim_half = rotary_dim // 2
|
|
|
|
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
|
rk = tl.arange(0, BLOCK_K // 2)
|
|
if not IS_SEQLEN_OFFSETS_TENSOR:
|
|
rm_cs = rm + SEQLEN_OFFSETS
|
|
else:
|
|
rm_cs = rm + tl.load(SEQLEN_OFFSETS + pid_batch)
|
|
|
|
X = X + (
|
|
pid_batch * stride_x_batch
|
|
+ rm[:, None] * stride_x_seqlen
|
|
+ pid_head * stride_x_nheads
|
|
+ rk[None, :] * stride_x_headdim * (2 if INTERLEAVED else 1)
|
|
)
|
|
COS = COS + (rm_cs[:, None] * rotary_dim_half + rk[None, :])
|
|
SIN = SIN + (rm_cs[:, None] * rotary_dim_half + rk[None, :])
|
|
|
|
cos = tl.load(
|
|
COS, mask=(rm_cs[:, None] < seqlen_ro) & (rk[None, :] < rotary_dim_half), other=1.0
|
|
).to(tl.float32)
|
|
sin = tl.load(
|
|
SIN, mask=(rm_cs[:, None] < seqlen_ro) & (rk[None, :] < rotary_dim_half), other=0.0
|
|
).to(tl.float32)
|
|
x0 = tl.load(X, mask=(rm[:, None] < seqlen) & (rk[None, :] < rotary_dim_half), other=0.0).to(
|
|
tl.float32
|
|
)
|
|
x1 = tl.load(
|
|
X + stride_x_headdim * (1 if INTERLEAVED else rotary_dim_half),
|
|
mask=(rm[:, None] < seqlen) & (rk[None, :] < rotary_dim_half),
|
|
other=0.0,
|
|
).to(tl.float32)
|
|
if not CONJUGATE:
|
|
o0 = x0 * cos - x1 * sin
|
|
o1 = x0 * sin + x1 * cos
|
|
else:
|
|
o0 = x0 * cos + x1 * sin
|
|
o1 = -x0 * sin + x1 * cos
|
|
|
|
# write back result
|
|
OUT = OUT + (
|
|
pid_batch * stride_out_batch
|
|
+ rm[:, None] * stride_out_seqlen
|
|
+ pid_head * stride_out_nheads
|
|
+ rk[None, :] * stride_out_headdim * (2 if INTERLEAVED else 1)
|
|
)
|
|
tl.store(OUT, o0, mask=(rm[:, None] < seqlen) & (rk[None, :] < rotary_dim_half))
|
|
tl.store(
|
|
OUT + stride_out_headdim * (1 if INTERLEAVED else rotary_dim_half),
|
|
o1,
|
|
mask=(rm[:, None] < seqlen) & (rk[None, :] < rotary_dim_half),
|
|
)
|
|
|
|
|
|
def apply_rotary(
|
|
x: torch.Tensor,
|
|
cos: torch.Tensor,
|
|
sin: torch.Tensor,
|
|
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
|
interleaved=False,
|
|
inplace=False,
|
|
conjugate=False,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Arguments:
|
|
x: (batch, seqlen, nheads, headdim)
|
|
cos: (seqlen_ro, rotary_dim / 2)
|
|
sin: (seqlen_ro, rotary_dim / 2)
|
|
seqlen_offsets: integer or integer tensor of size (batch,)
|
|
Returns:
|
|
y: (batch, seqlen, nheads, headdim)
|
|
"""
|
|
batch, seqlen, nheads, headdim = x.shape
|
|
seqlen_ro, rotary_dim = cos.shape
|
|
assert sin.shape == cos.shape
|
|
rotary_dim *= 2
|
|
assert rotary_dim <= headdim, "rotary_dim must be <= headdim"
|
|
assert headdim <= 256, "Only support headdim <= 256"
|
|
assert seqlen_ro >= seqlen, "seqlen_ro must be >= seqlen"
|
|
|
|
assert (
|
|
cos.dtype == sin.dtype
|
|
), f"cos and sin must have the same dtype, got {cos.dtype} and {sin.dtype}"
|
|
assert (
|
|
x.dtype == cos.dtype
|
|
), f"Input and cos/sin must have the same dtype, got {x.dtype} and {cos.dtype}"
|
|
|
|
cos, sin = cos.contiguous(), sin.contiguous()
|
|
if isinstance(seqlen_offsets, torch.Tensor):
|
|
assert seqlen_offsets.shape == (batch,)
|
|
assert seqlen_offsets.dtype in [torch.int32, torch.int64]
|
|
seqlen_offsets = seqlen_offsets.contiguous()
|
|
else:
|
|
assert seqlen_offsets + seqlen <= seqlen_ro
|
|
|
|
output = torch.empty_like(x) if not inplace else x
|
|
if rotary_dim < headdim and not inplace:
|
|
output[..., rotary_dim:].copy_(x[..., rotary_dim:])
|
|
|
|
BLOCK_K = (
|
|
32
|
|
if rotary_dim <= 32
|
|
else (64 if rotary_dim <= 64 else (128 if rotary_dim <= 128 else 256))
|
|
)
|
|
grid = lambda META: (triton.cdiv(seqlen, META["BLOCK_M"]), batch, nheads) # noqa
|
|
BLOCK_M = 4 if interleaved else (8 if rotary_dim <= 64 else 4)
|
|
|
|
rotary_kernel[grid](
|
|
output, # data ptrs
|
|
x,
|
|
cos,
|
|
sin,
|
|
seqlen_offsets,
|
|
seqlen, # shapes
|
|
nheads,
|
|
rotary_dim,
|
|
seqlen_ro,
|
|
seqlen // 128, # key for triton cache (limit number of compilations)
|
|
output.stride(0), # strides
|
|
output.stride(1),
|
|
output.stride(2),
|
|
output.stride(3),
|
|
x.stride(0),
|
|
x.stride(1),
|
|
x.stride(2),
|
|
x.stride(3),
|
|
BLOCK_K,
|
|
isinstance(seqlen_offsets, torch.Tensor),
|
|
interleaved,
|
|
conjugate,
|
|
BLOCK_M,
|
|
)
|
|
return output
|