flash-attention/tests/test_flash_attn.py
2022-10-31 14:34:57 -07:00

956 lines
51 KiB
Python

import math
import torch
import torch.nn.functional as F
import pytest
from einops import rearrange, repeat
from flash_attn.flash_attn_interface import flash_attn_func, flash_attn_unpadded_qkvpacked_func, _get_block_size, flash_attn_unpadded_kvpacked_func, flash_attn_unpadded_func
from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_split_func
from flash_attn.bert_padding import unpad_input, pad_input, index_first_axis
is_sm75 = torch.cuda.get_device_capability('cuda') == (7, 5)
is_sm80 = torch.cuda.get_device_capability('cuda') == (8, 0)
def generate_random_padding_mask(max_seqlen, batch_size, device, mode='random'):
assert mode in ['full', 'random', 'third', 'split']
if mode == 'full':
lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32)
elif mode == 'random':
lengths = torch.randint(max(1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device)
elif mode == 'third':
lengths = torch.randint(max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device)
elif mode == 'split':
lengths0 = torch.randint(min(128, max_seqlen), max_seqlen + 1,
(batch_size // 4 * 3, 1), device=device)
lengths1 = torch.randint(min(max(1, max_seqlen - 20), 128), min(max_seqlen, 128) + 1,
(batch_size - batch_size // 4 * 3, 1), device=device)
lengths = torch.cat([lengths0, lengths1], dim=0)
padding_mask = repeat(torch.arange(max_seqlen, device=device), 's -> b s', b=batch_size) < lengths
return padding_mask
def generate_qkv(x, Wqkv, nheads, query_padding_mask=None, key_padding_mask=None,
kvpacked=False, qkvpacked=False):
"""
Arguments:
x: (batch_size, seqlen, nheads * d)
Wqkv: nn.Linear(nheads * d, 3 * nheads * d)
query_padding_mask: (batch_size, seqlen), bool
key_padding_mask: (batch_size, seqlen), bool
"""
assert not (kvpacked and qkvpacked)
batch_size, seqlen, dim = x.shape
q, k, v = Wqkv(x).chunk(3, dim=-1)
if query_padding_mask is not None:
q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, query_padding_mask)
q_unpad = rearrange(q_unpad, 'nnz (h d) -> nnz h d', h=nheads)
output_pad_fn = lambda output_unpad: rearrange(
pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen),
'b s (h d) -> b s h d', h=nheads
)
else:
q_unpad = rearrange(q, 'b s (h d) -> (b s) h d', h=nheads)
cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
device=q_unpad.device)
max_seqlen_q = seqlen
output_pad_fn = lambda output_unpad: rearrange(output_unpad, '(b s) h d -> b s h d', b=batch_size)
if key_padding_mask is not None:
k_unpad, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask)
k_unpad = rearrange(k_unpad, 'nnz (h d) -> nnz h d', h=nheads)
v_unpad, _, _, _ = unpad_input(v, key_padding_mask)
v_unpad = rearrange(v_unpad, 'nnz (h d) -> nnz h d', h=nheads)
else:
k_unpad = rearrange(k, 'b s (h d) -> (b s) h d', h=nheads)
v_unpad = rearrange(v, 'b s (h d) -> (b s) h d', h=nheads)
cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
device=q_unpad.device)
max_seqlen_k = seqlen
if qkvpacked:
assert (query_padding_mask == key_padding_mask).all()
qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
qkv = rearrange(torch.stack([q, k, v], dim=2), 'b s t (h d) -> b s t h d', h=nheads)
if query_padding_mask is not None:
dqkv_pad_fn = lambda dqkv_unpad: rearrange(
pad_input(rearrange(dqkv_unpad, 'nnz t h d -> nnz (t h d)'), indices_q, batch_size, seqlen),
'b s (t h d) -> b s t h d', t=3, h=nheads
)
else:
dqkv_pad_fn = lambda dqkv_unpad: rearrange(dqkv_unpad, '(b s) t h d -> b s t h d', b=batch_size)
return (qkv_unpad.detach().requires_grad_(), cu_seqlens_q, max_seqlen_q,
qkv.detach().requires_grad_(), output_pad_fn, dqkv_pad_fn)
elif kvpacked:
kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
q = rearrange(q, 'b s (h d) -> b s h d', h=nheads)
kv = rearrange(torch.stack([k, v], dim=2), 'b s t (h d) -> b s t h d', h=nheads)
dq_pad_fn = output_pad_fn
if key_padding_mask is not None:
dkv_pad_fn = lambda dkv_unpad: rearrange(
pad_input(rearrange(dkv_unpad, 'nnz t h d -> nnz (t h d)'), indices_k, batch_size, seqlen),
'b s (t h d) -> b s t h d', t=2, h=nheads
)
else:
dkv_pad_fn = lambda dkv_unpad: rearrange(dkv_unpad, '(b s) t h d -> b s t h d', b=batch_size)
return (q_unpad.detach().requires_grad_(), kv_unpad.detach().requires_grad_(),
cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
q.detach().requires_grad_(), kv.detach().requires_grad_(),
output_pad_fn, dq_pad_fn, dkv_pad_fn)
else:
q, k, v = [rearrange(z, 'b s (h d) -> b s h d', h=nheads).detach().requires_grad_()
for z in [q, k, v]]
dq_pad_fn = output_pad_fn
if key_padding_mask is not None:
dk_pad_fn = lambda dk_unpad: rearrange(
pad_input(rearrange(dk_unpad, 'nnz h d -> nnz (h d)'), indices_k, batch_size, seqlen),
'b s (h d) -> b s h d', h=nheads
)
else:
dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, '(b s) h d -> b s h d', b=batch_size)
return (q_unpad.detach().requires_grad_(), k_unpad.detach().requires_grad_(),
v_unpad.detach().requires_grad_(),
cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
q, k, v,
output_pad_fn, dq_pad_fn, dk_pad_fn)
def attention_ref(q, k, v, query_padding_mask=None, key_padding_mask=None, dropout_p=0.0,
dropout_mask=None, causal=False, upcast=True, reorder_ops=False):
"""
Arguments:
q: (batch_size, seqlen_q, nheads, head_dim)
k: (batch_size, seqlen_k, nheads, head_dim)
v: (batch_size, seqlen_k, nheads, head_dim)
query_padding_mask: (batch_size, seqlen_q)
key_padding_mask: (batch_size, seqlen_k)
dropout_p: float
dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
output back to fp16/bf16.
reorder_ops: whether to change the order of operations (scaling k instead of scaling k, etc.)
without changing the math. This is to estimate the numerical error from operation
reordering.
Output:
output: (batch_size, seqlen_q, nheads, head_dim)
attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
"""
dtype_og = q.dtype
if upcast:
q, k, v = q.float(), k.float(), v.float()
seqlen_q, seqlen_k = q.shape[1], k.shape[1]
d = q.shape[-1]
if not reorder_ops:
scores = torch.einsum('bthd,bshd->bhts', q / math.sqrt(d), k)
else:
scores = torch.einsum('bthd,bshd->bhts', q, k / math.sqrt(d))
if key_padding_mask is not None:
scores.masked_fill_(rearrange(~key_padding_mask, 'b s -> b 1 1 s'), float('-inf'))
if causal:
causal_mask = torch.triu(torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=q.device), 1)
scores.masked_fill_(causal_mask, float('-inf'))
attention = torch.softmax(scores, dim=-1)
dropout_scaling = 1.0 / (1 - dropout_p)
# attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
# output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
if dropout_mask is not None:
attention_drop = attention.masked_fill(~dropout_mask, 0.0)
else:
attention_drop = attention
output = torch.einsum('bhts,bshd->bthd', attention_drop, v * dropout_scaling)
if query_padding_mask is not None:
output.masked_fill_(rearrange(~query_padding_mask, 'b s -> b s 1 1'), 0.0)
attention = attention.masked_fill(rearrange(~query_padding_mask, 'b s -> b 1 s 1'), 0.0)
return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)
def attention_kvpacked_ref(q, kv, query_padding_mask=None, key_padding_mask=None, dropout_p=0.0,
dropout_mask=None, causal=False, upcast=True, reorder_ops=False):
return attention_ref(q, kv[:, :, 0], kv[:, :, 1], query_padding_mask,
key_padding_mask, dropout_p, dropout_mask, upcast=upcast, causal=causal,
reorder_ops=reorder_ops)
def attention_qkvpacked_ref(qkv, key_padding_mask=None, dropout_p=0.0,
dropout_mask=None, causal=False, upcast=True, reorder_ops=False):
return attention_ref(qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], key_padding_mask,
key_padding_mask, dropout_p, dropout_mask, upcast=upcast, causal=causal,
reorder_ops=reorder_ops)
def generate_sparsity_mask(seqlen, sparsity=0.3):
repeats = seqlen // 16 // 2
# mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda'),
# torch.tensor([0, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
# mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda'),
# torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
# mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
# mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
nrow, ncol = seqlen // 16, seqlen // 256
mask = torch.rand(nrow, ncol, device='cuda') < sparsity
return mask
def attention_blocksparse_ref(qkv, blockmask, attn_mask, dropout_p, dropout_mask):
"""
Arguments:
qkv: (batch_size, seqlen, 3, nheads, head_dim)
blockmask: (seqlen / 16, seqlen / 256)
attn_mask: (batch_size, seqlen)
dropout_p: float
dropout_mask: (batch_size, nheads, seqlen, seqlen)
Output:
output: (batch_size, seqlen, nheads, head_dim)
attention: softmax after dropout
"""
q, k, v = qkv.float().unbind(dim=2)
d = qkv.shape[-1]
seqlen = qkv.shape[1]
scores = torch.einsum('bthd,bshd->bhts', q / math.sqrt(d), k)
scores.masked_fill_(rearrange(~attn_mask, 'b s -> b 1 1 s'), float('-inf'))
blockmask = repeat(blockmask, 's_16 s_256 -> (s_16 16) (s_256 256)')
blockmask = blockmask[:seqlen, :seqlen]
scores.masked_fill_(rearrange(~blockmask, 't s -> 1 1 t s'), float('-inf'))
attention = torch.softmax(scores, dim=-1)
attention = attention.masked_fill(rearrange(~attn_mask, 'b s -> b 1 s 1'), 0.0)
attention = attention.masked_fill_(rearrange(~blockmask, 't s -> 1 1 t s'), 0.0)
attention_drop = attention.masked_fill(~dropout_mask, 0.0) / (1 - dropout_p)
output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
output.masked_fill_(rearrange(~attn_mask, 'b s -> b s 1 1'), 0)
return output.to(dtype=qkv.dtype), attention.to(dtype=qkv.dtype)
def convert_flash_attn_S_to_softmax(S, query_padding_mask, key_padding_mask, head_dim, is_dropout,
causal=False):
"""FlashAttention stores the S matrix in a different way.
Arguments:
S: (batch_size, nheads, seqlen_q, seqlen_k)
query_padding_mask: (batch_size, seqlen_q)
key_padding_mask: (batch_size, seqlen_k)
"""
S_flat = rearrange(S, 'b h t s -> b h (t s)')
seqlen_q, seqlen_k = S.shape[-2:]
block_size = _get_block_size(S.device, head_dim, is_dropout)
loop_steps = (seqlen_k + block_size - 1) // block_size
warps_n = 4
mmas_n = (seqlen_k // warps_n // 16) if seqlen_k <= block_size else (block_size // warps_n // 16)
S_converted = rearrange(S_flat, 'b h (loop nsteps mmas_n warps_n eight t r c0 c1) -> b h (nsteps r eight) (loop mmas_n warps_n c0 t c1)',
loop=loop_steps, nsteps=seqlen_q // 16, mmas_n=mmas_n, warps_n=warps_n, eight=8, t=4,
r=2, c0=2, c1=2)
# Need to zero out things not in attention_mask in case S was initialized with random values
# and some of those values aren't overwritten.
seqlen_q_og = query_padding_mask.shape[-1]
if seqlen_q_og < seqlen_q:
query_padding_mask = F.pad(query_padding_mask, (0, seqlen_q - seqlen_q_og))
else:
query_padding_mask = query_padding_mask[:, :seqlen_q]
S_converted = S_converted.masked_fill(rearrange(~query_padding_mask, 'b s -> b 1 s 1'), 0.0)
seqlen_k_og = key_padding_mask.shape[-1]
if seqlen_k_og < seqlen_k:
key_padding_mask = F.pad(key_padding_mask, (0, seqlen_k - seqlen_k_og))
else:
key_padding_mask = key_padding_mask[:, :seqlen_k]
S_converted = S_converted.masked_fill(rearrange(~key_padding_mask, 'b s -> b 1 1 s'), 0.0)
if causal:
causal_mask = torch.triu(torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=S.device), 1)
S_converted.masked_fill_(causal_mask, 0.0)
if seqlen_q_og < seqlen_q:
S_converted = S_converted[:, :, :seqlen_q_og, :]
else:
S_converted = F.pad(S_converted, (0, 0, 0, seqlen_q_og - seqlen_q))
if seqlen_k_og < seqlen_k:
S_converted = S_converted[:, :, :, :seqlen_k_og]
else:
S_converted = F.pad(S_converted, (0, seqlen_k_og - seqlen_k))
return S_converted
def normalize_flash_attn_S(attn_unnorm, q, k, v, query_padding_mask=None, key_padding_mask=None,
is_dropout=False, causal=False):
"""
Arguments:
q: (batch_size, seqlen_q, nheads, head_dim)
k, v: (batch_size, seqlen_k, nheads, head_dim)
key_padding_mask: (batch_size, seqlen_q)
Output:
softmax_lse: (batch_size, nheads, seqlen_q)
softmax_max: (batch_size, nheads, seqlen_q)
"""
q, k, v = q.float(), k.float(), v.float()
_, seqlen_q, _, head_dim = q.shape
seqlen_k = k.shape[1]
scores = torch.einsum('bthd,bshd->bhts', q / math.sqrt(head_dim), k)
if key_padding_mask is not None:
scores.masked_fill_(rearrange(~key_padding_mask, 'b s -> b 1 1 s'), float('-inf'))
if causal:
causal_mask = torch.triu(torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=q.device), 1)
scores.masked_fill_(causal_mask, float('-inf'))
block_size = _get_block_size(scores.device, head_dim, is_dropout)
scores_block = scores.split(block_size, dim=-1)
lse_block = torch.stack([torch.logsumexp(s, dim=-1) for s in scores_block], dim=-1)
lcse_block = torch.logcumsumexp(lse_block, dim=-1).unbind(dim=-1)
scores_max_block = ([torch.amax(scores_block[0], dim=-1)]
+ [torch.maximum(torch.amax(s, dim=-1), lcse)
for s, lcse in zip(scores_block[1:], lcse_block[:-1])])
attn_unnorm_block = attn_unnorm.split(block_size, dim=-1)
attn_norm = torch.cat([a / rearrange(torch.exp(lcse_block[-1] - m), 'b h s -> b h s 1')
for a, m in zip(attn_unnorm_block, scores_max_block)], dim=-1)
if query_padding_mask is not None:
attn_norm.masked_fill_(rearrange(~query_padding_mask, 'b s -> b 1 s 1'), 0.0)
return attn_norm.to(dtype=attn_unnorm.dtype)
def get_dropout_fraction(dropout_mask, query_padding_mask=None, key_padding_mask=None, causal=False):
"""
dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k), bool. True means keep, False means drop.
query_padding_mask: (batch_size, seqlen_q)
key_padding_mask: (batch_size, seqlen_k)
"""
batch_size, nheads, seqlen_q, seqlen_k = dropout_mask.shape
dropped = ~dropout_mask
if query_padding_mask is not None:
dropped.masked_fill_(rearrange(~query_padding_mask, 'b s -> b 1 s 1'), False)
if key_padding_mask is not None:
dropped.masked_fill_(rearrange(~key_padding_mask, 'b s -> b 1 1 s'), False)
if causal:
causal_mask = torch.triu(torch.ones(seqlen_q, seqlen_k, dtype=torch.bool,
device=dropout_mask.device), 1)
dropped.masked_fill_(causal_mask, False)
dropped_total = dropped.sum()
query_lengths = (query_padding_mask.sum(dim=-1) if query_padding_mask is not None
else torch.full((batch_size,), seqlen_q, device=dropout_mask.device))
key_lengths = (key_padding_mask.sum(dim=-1) if key_padding_mask is not None
else torch.full((batch_size,), seqlen_k, device=dropout_mask.device))
if not causal:
numel_per_batch = query_lengths * key_lengths
else:
numel_per_batch = torch.where(
query_lengths <= key_lengths,
query_lengths * (query_lengths + 1) / 2,
query_lengths * key_lengths - (key_lengths * (key_lengths - 1) / 2)
)
return dropped_total / (numel_per_batch.sum() * nheads)
@pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize('dtype', [torch.float16])
@pytest.mark.parametrize('causal', [False, True])
# @pytest.mark.parametrize('causal', [False])
@pytest.mark.parametrize('d', [128, 64, 80, 40, 32, 16])
# @pytest.mark.parametrize('d', [64])
@pytest.mark.parametrize('seqlen', [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048])
# @pytest.mark.parametrize('seqlen', [128])
@pytest.mark.parametrize('dropout_p', [0.0, 0.17])
# @pytest.mark.parametrize('dropout_p', [0.0])
def test_flash_attn_unpadded_qkvpacked(seqlen, d, dropout_p, causal, dtype):
if seqlen >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30:
pytest.skip() # Reference implementation OOM
device = 'cuda'
# if dtype == torch.float16:
# rtol, atol = (1e-3, 3e-4) if not causal else (1e-3, 1e-3)
# else: # torch.bfloat16
# rtol, atol = (3e-3, 3e-3) if not causal else (1e-3, 1e-3)
# set seed
torch.random.manual_seed(0)
# Set smaller batch size so it would trigger num_splits > 1
batch_size = 8
nheads = 4
x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True)
Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype)
# key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random')
key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full')
qkv_unpad, cu_seqlens, max_seqlen, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv(
x, Wqkv, nheads, key_padding_mask, key_padding_mask, qkvpacked=True
)
output_unpad, sm_lse, S_dmask = flash_attn_unpadded_qkvpacked_func(
qkv_unpad, cu_seqlens, max_seqlen, dropout_p, return_attn_probs=True, causal=causal
)
output = output_pad_fn(output_unpad)
S_dmask_converted = convert_flash_attn_S_to_softmax(
S_dmask, key_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal
)
dropout_mask = S_dmask_converted >= 0
attn_unnorm = S_dmask_converted.abs()
attn = normalize_flash_attn_S(attn_unnorm, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2],
key_padding_mask, key_padding_mask, dropout_p > 0.0, causal=causal)
dropout_fraction = get_dropout_fraction(dropout_mask, key_padding_mask, key_padding_mask,
causal=causal).item()
output_ref, attn_ref = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask,
causal=causal)
output_pt, attn_pt = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask,
causal=causal, upcast=False, reorder_ops=True)
print(f'Actual dropout fraction: {dropout_fraction}')
print(f'Output max diff: {(output - output_ref).abs().max().item()}')
print(f'Output mean diff: {(output - output_ref).abs().mean().item()}')
print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}')
print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}')
print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}')
print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}')
if is_sm80 or d <= 64: # Only run backward for d=128 on A100
g = torch.randn_like(output)
dqkv_unpad, = torch.autograd.grad(output, qkv_unpad, g)
dqkv = dqkv_pad_fn(dqkv_unpad)
dqkv_ref, = torch.autograd.grad(output_ref, qkv, g)
dqkv_pt, = torch.autograd.grad(output_pt, qkv, g)
print(f'dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}')
print(f'dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}')
print(f'dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}')
print(f'dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}')
print(f'dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}')
print(f'dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}')
print(f'dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}')
print(f'dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}')
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item()
# assert torch.allclose(output, output_ref, rtol=rtol, atol=atol)
assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
# assert torch.allclose(attn, attn_ref, rtol=rtol, atol=atol)
if dropout_p == 0.0:
assert dropout_mask.all()
else:
assert 0.98 <= dropout_fraction / dropout_p <= 1.02
if is_sm80 or d <= 64: # Only run backward for d=128 on A100
# Error for dK and dV could be a bit higher if we're splitting along seqlen_q dimension
assert (dqkv - dqkv_ref).abs().max().item() <= 4 * (dqkv_pt - dqkv_ref).abs().max().item()
# assert torch.allclose(dqkv, dqkv_ref, rtol=rtol, atol=atol)
@pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize('dtype', [torch.float16])
@pytest.mark.parametrize('causal', [False, True])
@pytest.mark.parametrize('d', [128, 64, 80, 40, 32, 16])
# @pytest.mark.parametrize('d', [64])
@pytest.mark.parametrize('seqlen', [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048])
# @pytest.mark.parametrize('seqlen', [128])
@pytest.mark.parametrize('dropout_p', [0.0, 0.17])
# @pytest.mark.parametrize('dropout_p', [0.0])
def test_flash_attn_unpadded_kvpacked(seqlen, d, dropout_p, causal, dtype):
if seqlen >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30:
pytest.skip() # Reference implementation OOM
device = 'cuda'
# if dtype == torch.float16:
# rtol, atol = (1e-3, 3e-4) if not causal else (1e-3, 1e-3)
# else: # torch.bfloat16
# rtol, atol = (3e-3, 3e-3) if not causal else (1e-3, 1e-3)
# set seed
torch.random.manual_seed(0)
batch_size = 32
nheads = 4
x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True)
Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype)
query_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random')
key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random')
(q_unpad, kv_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q, kv,
output_pad_fn, dq_pad_fn, dkv_pad_fn) = generate_qkv(
x, Wqkv, nheads, query_padding_mask, key_padding_mask, kvpacked=True
)
output_unpad, sm_lse, S_dmask = flash_attn_unpadded_kvpacked_func(
q_unpad, kv_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, return_attn_probs=True, causal=causal
)
output = output_pad_fn(output_unpad)
S_dmask_converted = convert_flash_attn_S_to_softmax(
S_dmask, query_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal
)
dropout_mask = S_dmask_converted >= 0
attn_unnorm = S_dmask_converted.abs()
attn = normalize_flash_attn_S(attn_unnorm, q, kv[:, :, 0], kv[:, :, 1],
query_padding_mask, key_padding_mask, dropout_p > 0.0, causal=causal)
dropout_fraction = get_dropout_fraction(dropout_mask, query_padding_mask, key_padding_mask,
causal=causal)
output_ref, attn_ref = attention_kvpacked_ref(q, kv, query_padding_mask, key_padding_mask,
dropout_p, dropout_mask, causal=causal)
output_pt, attn_pt = attention_kvpacked_ref(q, kv, query_padding_mask, key_padding_mask,
dropout_p, dropout_mask, causal=causal,
upcast=False, reorder_ops=True)
print(f'Actual dropout fraction: {dropout_fraction}')
print(f'Output max diff: {(output - output_ref).abs().max().item()}')
print(f'Output mean diff: {(output - output_ref).abs().mean().item()}')
print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}')
print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}')
print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}')
print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}')
if is_sm80 or d <= 64: # Only run backward for d=128 on A100
g = torch.randn_like(output)
dq_unpad, dkv_unpad, = torch.autograd.grad(output, (q_unpad, kv_unpad), g)
dq = dq_pad_fn(dq_unpad)
dkv = dkv_pad_fn(dkv_unpad)
dq_ref, dkv_ref, = torch.autograd.grad(output_ref, (q, kv), g)
dq_pt, dkv_pt = torch.autograd.grad(output_pt, (q, kv), g)
print(f'dQ max diff: {(dq - dq_ref).abs().max().item()}')
print(f'dK max diff: {(dkv[:, :, 0] - dkv_ref[:, :, 0]).abs().max().item()}')
print(f'dV max diff: {(dkv[:, :, 1] - dkv_ref[:, :, 1]).abs().max().item()}')
print(f'dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}')
print(f'dK Pytorch max diff: {(dkv_pt[:, :, 0] - dkv_ref[:, :, 0]).abs().max().item()}')
print(f'dV Pytorch max diff: {(dkv_pt[:, :, 1] - dkv_ref[:, :, 1]).abs().max().item()}')
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item()
# assert torch.allclose(output, output_ref, rtol=rtol, atol=atol)
assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
# assert torch.allclose(attn, attn_ref, rtol=rtol, atol=atol)
if dropout_p == 0.0:
assert dropout_mask.all()
else:
assert 0.99 <= dropout_fraction / dropout_p <= 1.01
if is_sm80 or d <= 64: # Only run backward for d=128 on A100
assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item()
assert (dkv - dkv_ref).abs().max().item() <= 2 * (dkv_pt - dkv_ref).abs().max().item()
# assert torch.allclose(dq, dq_ref, rtol=rtol, atol=atol)
# assert torch.allclose(dkv, dkv_ref, rtol=rtol, atol=atol)
@pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize('dtype', [torch.float16])
@pytest.mark.parametrize('causal', [False, True])
@pytest.mark.parametrize('d', [128, 64, 80, 40, 32, 16])
# @pytest.mark.parametrize('d', [64])
@pytest.mark.parametrize('seqlen', [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048])
# @pytest.mark.parametrize('seqlen', [128])
@pytest.mark.parametrize('dropout_p', [0.0, 0.17])
# @pytest.mark.parametrize('dropout_p', [0.0])
def test_flash_attn_unpadded(seqlen, d, dropout_p, causal, dtype):
if seqlen >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30:
pytest.skip() # Reference implementation OOM
device = 'cuda'
# if dtype == torch.float16:
# rtol, atol = (1e-3, 3e-4) if not causal else (1e-3, 1e-3)
# else: # torch.bfloat16
# rtol, atol = (3e-3, 3e-3) if not causal else (1e-3, 1e-3)
# set seed
torch.random.manual_seed(0)
batch_size = 32
nheads = 4
x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True)
Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype)
query_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random')
key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random')
(q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q, k, v,
output_pad_fn, dq_pad_fn, dk_pad_fn) = generate_qkv(
x, Wqkv, nheads, query_padding_mask, key_padding_mask
)
output_unpad, sm_lse, S_dmask = flash_attn_unpadded_func(
q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, return_attn_probs=True, causal=causal
)
output = output_pad_fn(output_unpad)
S_dmask_converted = convert_flash_attn_S_to_softmax(
S_dmask, query_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal
)
dropout_mask = S_dmask_converted >= 0
attn_unnorm = S_dmask_converted.abs()
attn = normalize_flash_attn_S(attn_unnorm, q, k, v, query_padding_mask, key_padding_mask,
dropout_p > 0.0, causal=causal)
dropout_fraction = get_dropout_fraction(dropout_mask, query_padding_mask, key_padding_mask,
causal=causal)
output_ref, attn_ref = attention_ref(q, k, v, query_padding_mask, key_padding_mask,
dropout_p, dropout_mask, causal=causal)
output_pt, attn_pt = attention_ref(q, k, v, query_padding_mask, key_padding_mask,
dropout_p, dropout_mask, causal=causal,
upcast=False, reorder_ops=True)
print(f'Actual dropout fraction: {dropout_fraction}')
print(f'Output max diff: {(output - output_ref).abs().max().item()}')
print(f'Output mean diff: {(output - output_ref).abs().mean().item()}')
print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}')
print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}')
print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}')
print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}')
if is_sm80 or d <= 64: # Only run backward for d=128 on A100
g = torch.randn_like(output)
dq_unpad, dk_unpad, dv_unpad, = torch.autograd.grad(output, (q_unpad, k_unpad, v_unpad), g)
dq = dq_pad_fn(dq_unpad)
dk = dk_pad_fn(dk_unpad)
dv = dk_pad_fn(dv_unpad)
dq_ref, dk_ref, dv_ref, = torch.autograd.grad(output_ref, (q, k, v), g)
dq_pt, dk_pt, dv_pt, = torch.autograd.grad(output_pt, (q, k, v), g)
print(f'dQ max diff: {(dq - dq_ref).abs().max().item()}')
print(f'dK max diff: {(dk - dk_ref).abs().max().item()}')
print(f'dV max diff: {(dv - dv_ref).abs().max().item()}')
print(f'dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}')
print(f'dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}')
print(f'dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}')
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item()
# assert torch.allclose(output, output_ref, rtol=rtol, atol=atol)
assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
# assert torch.allclose(attn, attn_ref, rtol=rtol, atol=atol)
if dropout_p == 0.0:
assert dropout_mask.all()
else:
assert 0.99 <= dropout_fraction / dropout_p <= 1.01
if is_sm80 or d <= 64: # Only run backward for d=128 on A100
assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item()
assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item()
assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item()
# assert torch.allclose(dq, dq_ref, rtol=rtol, atol=atol)
# assert torch.allclose(dk, dk_ref, rtol=rtol, atol=atol)
# assert torch.allclose(dv, dv_ref, rtol=rtol, atol=atol)
@pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize('dtype', [torch.float16])
@pytest.mark.parametrize('causal', [False, True])
# @pytest.mark.parametrize('causal', [False])
@pytest.mark.parametrize('d', [128, 64, 80, 40, 32, 16])
# @pytest.mark.parametrize('d', [64])
@pytest.mark.parametrize('seqlen', [512])
@pytest.mark.parametrize('dropout_p', [0.0, 0.17])
# @pytest.mark.parametrize('dropout_p', [0.0])
def test_flash_attn_split(seqlen, d, dropout_p, causal, dtype):
if seqlen >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30:
pytest.skip() # Reference implementation OOM
device = 'cuda'
# if dtype == torch.float16:
# rtol, atol = (1e-3, 3e-4) if not causal else (1e-3, 1e-3)
# else: # torch.bfloat16
# rtol, atol = (3e-3, 3e-3) if not causal else (1e-3, 1e-3)
# set seed
torch.random.manual_seed(0)
batch_size = 32
nheads = 4
x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True)
Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype)
key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='split')
batch_size0 = batch_size // 4 * 3 # this must match what's in generate_random_padding_mask
# key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full')
qkv_unpad, cu_seqlens, max_seqlen0, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv(
x, Wqkv, nheads, key_padding_mask, key_padding_mask, qkvpacked=True
)
max_seqlen1 = 128
output_unpad, sm_lse, S_dmask0, S_dmask1 = flash_attn_unpadded_qkvpacked_split_func(
qkv_unpad, cu_seqlens, max_seqlen0, max_seqlen1, batch_size0, dropout_p,
return_attn_probs=True, causal=causal
)
output = output_pad_fn(output_unpad)
S_dmask0_converted = convert_flash_attn_S_to_softmax(
S_dmask0, key_padding_mask[:batch_size0], key_padding_mask[:batch_size0], d, dropout_p > 0.0, causal=causal
)
S_dmask1_converted = convert_flash_attn_S_to_softmax(
S_dmask1, key_padding_mask[batch_size0:, :max_seqlen1], key_padding_mask[batch_size0:, :max_seqlen1], d, dropout_p > 0.0, causal=causal
)
padding = (S_dmask0_converted.shape[-1] - S_dmask1_converted.shape[-1],
S_dmask0_converted.shape[-2] - S_dmask1_converted.shape[-2])
S_dmask_converted = torch.cat([S_dmask0_converted,
F.pad(S_dmask1_converted, (0, padding[0], 0, padding[1]))], dim=0)
dropout_mask = S_dmask_converted >= 0
attn_unnorm = S_dmask_converted.abs()
attn = normalize_flash_attn_S(attn_unnorm, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2],
key_padding_mask, key_padding_mask, dropout_p > 0.0, causal=causal)
dropout_fraction = get_dropout_fraction(dropout_mask, key_padding_mask, key_padding_mask,
causal=causal).item()
output_ref, attn_ref = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask,
causal=causal)
output_pt, attn_pt = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask,
causal=causal, upcast=False, reorder_ops=True)
print(f'Actual dropout fraction: {dropout_fraction}')
print(f'Output max diff: {(output - output_ref).abs().max().item()}')
print(f'Output mean diff: {(output - output_ref).abs().mean().item()}')
print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}')
print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}')
print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}')
print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}')
if is_sm80 or d <= 64: # Only run backward for d=128 on A100
g = torch.randn_like(output)
dqkv_unpad, = torch.autograd.grad(output, qkv_unpad, g)
dqkv = dqkv_pad_fn(dqkv_unpad)
dqkv_ref, = torch.autograd.grad(output_ref, qkv, g)
dqkv_pt, = torch.autograd.grad(output_pt, qkv, g)
print(f'dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}')
print(f'dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}')
print(f'dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}')
print(f'dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}')
print(f'dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}')
print(f'dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}')
print(f'dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}')
print(f'dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}')
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item()
# assert torch.allclose(output, output_ref, rtol=rtol, atol=atol)
assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
# assert torch.allclose(attn, attn_ref, rtol=rtol, atol=atol)
if dropout_p == 0.0:
assert dropout_mask.all()
else:
assert 0.99 <= dropout_fraction / dropout_p <= 1.01
if is_sm80 or d <= 64: # Only run backward for d=128 on A100
assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
# assert torch.allclose(dqkv, dqkv_ref, rtol=rtol, atol=atol)
@pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize('dtype', [torch.float16])
@pytest.mark.parametrize('causal', [False, True])
@pytest.mark.parametrize('d', [128, 64, 80, 40, 32, 16])
# @pytest.mark.parametrize('d', [64])
@pytest.mark.parametrize('seqlen', [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048])
# @pytest.mark.parametrize('seqlen', [128])
@pytest.mark.parametrize('dropout_p', [0.0, 0.17])
# @pytest.mark.parametrize('dropout_p', [0.0])
def test_flash_attn_race_condition(seqlen, d, dropout_p, causal, dtype):
if seqlen >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30:
pytest.skip() # Reference implementation OOM
device = 'cuda'
# set seed
torch.random.manual_seed(0)
batch_size = 32
nheads = 4
x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True)
Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype)
query_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random')
key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random')
(q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q, k, v,
output_pad_fn, dq_pad_fn, dk_pad_fn) = generate_qkv(
x, Wqkv, nheads, query_padding_mask, key_padding_mask
)
torch.random.manual_seed(0)
output_unpad_0, sm_lse_0, S_dmask_0 = flash_attn_unpadded_func(
q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, return_attn_probs=True, causal=causal
)
S_dmask_converted_0 = convert_flash_attn_S_to_softmax(
S_dmask_0, query_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal
)
if is_sm80 or d <= 64: # Only run backward for d=128 on A100
g = torch.randn_like(output_unpad_0)
dq_unpad_0, dk_unpad_0, dv_unpad_0, = torch.autograd.grad(output_unpad_0,
(q_unpad, k_unpad, v_unpad), g)
for _ in range(10):
torch.random.manual_seed(0)
output_unpad, sm_lse, S_dmask = flash_attn_unpadded_func(
q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, return_attn_probs=True, causal=causal
)
S_dmask_converted = convert_flash_attn_S_to_softmax(
S_dmask, query_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal
)
assert torch.equal(output_unpad, output_unpad_0)
# sm_lse has some parts that are uninitialized from torch.empty
# assert torch.equal(sm_lse, sm_lse_0)
assert torch.equal(S_dmask_converted, S_dmask_converted_0)
if is_sm80 or d <= 64: # Only run backward for d=128 on A100
dq_unpad, dk_unpad, dv_unpad, = torch.autograd.grad(output_unpad,
(q_unpad, k_unpad, v_unpad), g)
assert torch.equal(dq_unpad, dq_unpad_0)
assert torch.equal(dk_unpad, dk_unpad_0)
assert torch.equal(dv_unpad, dv_unpad_0)
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason='requires multiple GPUs')
def test_flash_attn_multigpu():
seqlen = 256
d = 64
dropout_p = 0.0
causal = False
dtype = torch.float16
device = 'cuda:1'
torch.random.manual_seed(0)
batch_size = 32
nheads = 4
x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True)
Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype)
key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random')
# key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full')
qkv_unpad, cu_seqlens, max_seqlen, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv(
x, Wqkv, nheads, key_padding_mask, key_padding_mask, qkvpacked=True
)
output_unpad, sm_lse, S_dmask = flash_attn_unpadded_qkvpacked_func(
qkv_unpad, cu_seqlens, max_seqlen, dropout_p, return_attn_probs=True, causal=causal
)
output = output_pad_fn(output_unpad)
S_dmask_converted = convert_flash_attn_S_to_softmax(
S_dmask, key_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal
)
dropout_mask = S_dmask_converted >= 0
attn_unnorm = S_dmask_converted.abs()
attn = normalize_flash_attn_S(attn_unnorm, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2],
key_padding_mask, key_padding_mask, dropout_p > 0.0, causal=causal)
dropout_fraction = get_dropout_fraction(dropout_mask, key_padding_mask, key_padding_mask,
causal=causal).item()
output_ref, attn_ref = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask,
causal=causal)
output_pt, attn_pt = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask,
causal=causal, upcast=False, reorder_ops=True)
print(f'Actual dropout fraction: {dropout_fraction}')
print(f'Output max diff: {(output - output_ref).abs().max().item()}')
print(f'Output mean diff: {(output - output_ref).abs().mean().item()}')
print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}')
print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}')
print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}')
print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}')
g = torch.randn_like(output)
dqkv_unpad, = torch.autograd.grad(output, qkv_unpad, g)
dqkv = dqkv_pad_fn(dqkv_unpad)
dqkv_ref, = torch.autograd.grad(output_ref, qkv, g)
dqkv_pt, = torch.autograd.grad(output_pt, qkv, g)
print(f'dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}')
print(f'dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}')
print(f'dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}')
print(f'dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}')
print(f'dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}')
print(f'dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}')
print(f'dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}')
print(f'dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}')
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item()
# assert torch.allclose(output, output_ref, rtol=rtol, atol=atol)
assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
# assert torch.allclose(attn, attn_ref, rtol=rtol, atol=atol)
if dropout_p == 0.0:
assert dropout_mask.all()
else:
assert 0.99 <= dropout_fraction / dropout_p <= 1.01
assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
from flash_attn.flash_attn_triton import flash_attn_func
@pytest.mark.skipif(not is_sm80, reason='Triton version is only tested on A100')
@pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize('dtype', [torch.float16])
@pytest.mark.parametrize('causal', [False, True])
# @pytest.mark.parametrize('causal', [False])
@pytest.mark.parametrize('d', [40, 48, 64, 128, 80, 88, 96])
# @pytest.mark.parametrize('d', [40])
# @pytest.mark.parametrize('seqlen', [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048])
@pytest.mark.parametrize('seqlen_q,seqlen_k', [(113, 203), (128, 217), (113, 211), (108, 256), (256, 512), (512, 256), (1024, 1024), (2048, 2048)])
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(1024, 1024)])
def test_flash_attn_triton(seqlen_q, seqlen_k, d, causal, dtype):
if seqlen_q >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30:
pytest.skip() # Reference implementation OOM
device = 'cuda'
# set seed
torch.random.manual_seed(0)
batch_size = 32
nheads = 4
q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype)
k, v = torch.randn(batch_size, seqlen_k, 2, nheads, d, device=device, dtype=dtype).unbind(dim=2)
q, k, v = [x.detach().requires_grad_() for x in [q, k, v]]
output = flash_attn_func(q, k, v, causal)
output_ref, attn_ref = attention_ref(q, k, v, causal=causal)
output_pt, attn_pt = attention_ref(q, k, v, causal=causal, upcast=False, reorder_ops=True)
print(f'Output max diff: {(output - output_ref).abs().max().item()}')
print(f'Output mean diff: {(output - output_ref).abs().mean().item()}')
print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}')
print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}')
g = torch.randn_like(output)
dq, dk, dv = torch.autograd.grad(output, (q, k, v), g)
dq_ref, dk_ref, dv_ref, = torch.autograd.grad(output_ref, (q, k, v), g)
dq_pt, dk_pt, dv_pt, = torch.autograd.grad(output_pt, (q, k, v), g)
print(f'dQ max diff: {(dq - dq_ref).abs().max().item()}')
print(f'dK max diff: {(dk - dk_ref).abs().max().item()}')
print(f'dV max diff: {(dv - dv_ref).abs().max().item()}')
print(f'dQ mean diff: {(dq - dq_ref).abs().mean().item()}')
print(f'dK mean diff: {(dk - dk_ref).abs().mean().item()}')
print(f'dV mean diff: {(dv - dv_ref).abs().mean().item()}')
print(f'dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}')
print(f'dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}')
print(f'dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}')
print(f'dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}')
print(f'dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}')
print(f'dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}')
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item()
# assert torch.allclose(output, output_ref, rtol=rtol, atol=atol)
assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item()
assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item()
assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item()
@pytest.mark.skipif(not is_sm80, reason='Triton version is only tested on A100')
@pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize('dtype', [torch.float16])
@pytest.mark.parametrize('causal', [False, True])
# @pytest.mark.parametrize('causal', [True])
@pytest.mark.parametrize('d', [40, 48, 64, 128, 80, 88, 96])
# @pytest.mark.parametrize('d', [64])
# @pytest.mark.parametrize('seqlen', [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048])
@pytest.mark.parametrize('seqlen_q,seqlen_k', [(113, 203), (128, 217), (113, 211), (108, 256), (256, 512), (512, 256), (1024, 1024), (1023, 1024), (2048, 2048)])
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(1023, 1024)])
def test_flash_attn_triton_race_condition(seqlen_q, seqlen_k, d, causal, dtype):
if seqlen_q >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30:
pytest.skip() # Reference implementation OOM
device = 'cuda'
# set seed
torch.random.manual_seed(0)
batch_size = 32
nheads = 4
q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype)
k, v = torch.randn(batch_size, seqlen_k, 2, nheads, d, device=device, dtype=dtype).unbind(dim=2)
q, k, v = [x.detach().requires_grad_() for x in [q, k, v]]
output_0 = flash_attn_func(q, k, v, causal)
g = torch.randn_like(output_0)
dq_0, dk_0, dv_0 = torch.autograd.grad(output_0, (q, k, v), g)
# Disable the SEQUENCE_PARALLEL option for the bwd to make sure it's deterministic
for i in range(10000):
output = flash_attn_func(q, k, v, causal)
# print(f'Output max diff: {(output - output_0).abs().max().item()}')
# dq, dk, dv = torch.autograd.grad(output, (q, k, v), g)
# print(f'dQ max diff: {(dq - dq_0).abs().max().item()}')
# print(f'dK max diff: {(dk - dk_0).abs().max().item()}')
# print(f'dV max diff: {(dv - dv_0).abs().max().item()}')
assert torch.equal(output, output_0)
# assert torch.equal(dq, dq_0)
# assert torch.equal(dk, dk_0)
# assert torch.equal(dv, dv_0)