flash-attention/benchmarks/utils.py
2022-05-26 13:57:38 -07:00

136 lines
4.5 KiB
Python

# Adapted from https://github.com/HazyResearch/hippo/blob/datasets/benchmark/utils.py
""" Useful functions for writing test code. """
import torch
import torch.utils.benchmark as benchmark
def benchmark_forward(fn, *inputs, min_run_time = 0.2, repeats = 10, desc='', verbose=True, **kwinputs):
""" Use Pytorch Benchmark on the forward pass of an arbitrary function. """
if verbose:
print(desc, '- Forward pass')
t = benchmark.Timer(
stmt='fn(*inputs, **kwinputs)',
globals={'fn': fn, 'inputs': inputs, 'kwinputs': kwinputs},
num_threads=torch.get_num_threads(),
)
m = t.timeit(repeats)
if verbose:
print(m)
return t, m
def benchmark_backward(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, **kwinputs):
""" Use Pytorch Benchmark on the backward pass of an arbitrary function. """
if verbose:
print(desc, '- Backward pass')
y = fn(*inputs, **kwinputs)
if type(y) is tuple:
y = y[0]
if grad is None:
grad = torch.randn_like(y)
else:
if grad.shape != y.shape:
raise RuntimeError('Grad shape does not match output shape')
t = benchmark.Timer(
stmt='y.backward(grad, retain_graph=True)',
globals={'y': y, 'grad': grad},
num_threads=torch.get_num_threads(),
)
m = t.timeit(repeats)
if verbose:
print(m)
return t, m
def benchmark_combined(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, **kwinputs):
""" Use Pytorch Benchmark on the forward+backward pass of an arbitrary function. """
if verbose:
print(desc, '- Forward + Backward pass')
# y = fn(*inputs, **kwinputs)
# if grad is None:
# grad = torch.randn_like(y)
# else:
# if grad.shape != y.shape:
# raise RuntimeError('Grad shape does not match output shape')
# del y
def f(grad, *inputs, **kwinputs):
y = fn(*inputs, **kwinputs)
if type(y) is tuple:
y = y[0]
if grad is None:
grad = torch.randn_like(y)
else:
if grad.shape != y.shape:
raise RuntimeError('Grad shape does not match output shape')
y.backward(grad, retain_graph=True)
t = benchmark.Timer(
stmt='f(grad, *inputs, **kwinputs)',
globals={'f': f, 'fn': fn, 'inputs': inputs, 'grad': grad, 'kwinputs': kwinputs},
num_threads=torch.get_num_threads(),
)
m = t.timeit(repeats)
if verbose:
print(m)
return t, m
def benchmark_all(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, **kwinputs):
""" Use Pytorch Benchmark on the forward+backward pass of an arbitrary function. """
return (
benchmark_forward(fn, *inputs, repeats=repeats, desc=desc, verbose=verbose, **kwinputs),
benchmark_backward(fn, *inputs, grad=grad, repeats=repeats, desc=desc, verbose=verbose,
**kwinputs),
benchmark_combined(fn, *inputs, grad=grad, repeats=repeats, desc=desc, verbose=verbose,
**kwinputs),
)
def pytorch_profiler(fn, *inputs, repeats=10):
""" Wrap benchmark functions in Pytorch profiler to see CUDA information. """
with torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
record_shapes=True,
profile_memory=True,
with_stack=True,
) as p:
# benchmark_forward(repeats, fn, *inputs)
fn(*inputs)
print(p.key_averages().table(
sort_by="self_cuda_time_total", row_limit=-1))
def convert_data(*tensors, device='cuda'):
tensors = tuple(t.to(device) for t in tensors)
for t in tensors:
if t.is_leaf: t.requires_grad = True
t.retain_grad()
return tensors
def log_backward(output, *inputs):
""" Perform backward pass of output and print gradients of input tensors. """
#print(f"{output=}")
output.sum().backward(retain_graph=True)
print("Gradients:")
for t in inputs:
print(t.grad)
t.grad.zero_()
def benchmark_memory(fn, *inputs, desc='', verbose=True, **kwinputs):
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
torch.cuda.synchronize()
fn(*inputs, **kwinputs)
torch.cuda.synchronize()
mem = torch.cuda.max_memory_allocated() / ((2 ** 20) * 1000)
if verbose:
print(f'{desc} max memory: ', mem)
torch.cuda.empty_cache()
return mem