flash-attention/flash_attn/flash_attn_interface.py
Kirthi Shankar Sivamani a03f6f8e9e
Enable CUDA graphs (#386)
* Add RNG state to kernel launch params

Signed-off-by: Kirthi Shankar Sivamani <ksivamani@nvidia.com>

* Save seed and offset for backward

Signed-off-by: Kirthi Shankar Sivamani <ksivamani@nvidia.com>

* Single thread write to global mem

Signed-off-by: Kirthi Shankar Sivamani <ksivamani@nvidia.com>

* compute_dq_dk_dv_1colblock get seed and offset from launch params

Signed-off-by: Kirthi Shankar Sivamani <ksivamani@nvidia.com>

* compute_dq_dk_dv_1rowblock get seed and offset from launch params

Signed-off-by: Kirthi Shankar Sivamani <ksivamani@nvidia.com>

* Change forward c++ APIs to save RNG state for backward

Signed-off-by: Kirthi Shankar Sivamani <ksivamani@nvidia.com>

* Change backward c++ APIs to set RNG state for bprop launcher

Signed-off-by: Kirthi Shankar Sivamani <ksivamani@nvidia.com>

* Bug fixes

Signed-off-by: Kirthi Shankar Sivamani <ksivamani@nvidia.com>

* Python side API changes

Signed-off-by: Kirthi Shankar Sivamani <ksivamani@nvidia.com>

* Bug fix; only save seeds instead of full offset

Signed-off-by: Kirthi Shankar Sivamani <ksivamani@nvidia.com>

* Account for 3D grid size

Signed-off-by: Kirthi Shankar Sivamani <ksivamani@nvidia.com>

---------

Signed-off-by: Kirthi Shankar Sivamani <ksivamani@nvidia.com>
2023-07-27 16:11:34 -07:00

495 lines
26 KiB
Python

import torch
import torch.nn as nn
import flash_attn_2_cuda as flash_attn_cuda
from einops import rearrange
def _get_block_size(device, head_dim, is_dropout, is_causal):
# This should match the block sizes in the CUDA kernel
assert head_dim <= 256
major, minor = torch.cuda.get_device_capability(device)
is_sm8x = major == 8 and minor > 0 # Only include sm86 and sm89, exclude sm80 (A100)
is_sm80 = major == 8 and minor == 0
is_sm90 = major == 9 and minor == 0
if head_dim <= 32:
return 128, 128
if head_dim <= 64:
return (128, 128) if not is_dropout else (128, 64)
elif head_dim <= 96:
return (64, 64) if (is_sm8x and is_causal) else (128, 64)
elif head_dim <= 128:
if is_sm8x:
return (64, 64) if (not is_dropout and is_causal) else (128, 32)
else:
return 128, (64 if not is_dropout else 32)
elif head_dim <= 160:
if is_sm8x:
return (128, 64) if not is_causal else (64, 64)
else:
return 128, 32
elif head_dim <= 192:
return (128, 64) if not is_dropout else (64, 64)
elif head_dim <= 224:
return (128, 64) if (is_sm80 or is_sm90) else (64, 64)
elif head_dim <= 256:
return (128, 64) if is_sm80 else (64, 64)
def _flash_attn_forward(q, k, v, dropout_p, softmax_scale, causal, return_softmax):
maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd(
q, k, v, None, dropout_p, softmax_scale, causal, return_softmax, None
)
return out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state
def _flash_attn_varlen_forward(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, softmax_scale, causal, return_softmax):
maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.varlen_fwd(
q, k, v, None, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p,
softmax_scale, False, causal, return_softmax, None
)
# if out.isnan().any() or softmax_lse.isnan().any():
# breakpoint()
return out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state
def _flash_attn_backward(dout, q, k, v, out, softmax_lse, dq, dk, dv,
dropout_p, softmax_scale, causal, rng_state=None):
maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
# dq, dk, dv are allocated by us so they should already be contiguous
dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
dq, dk, dv, softmax_d, = flash_attn_cuda.bwd(
dout, q, k, v, out, softmax_lse, dq, dk, dv, dropout_p,
softmax_scale, causal, None, rng_state
)
return dq, dk, dv, softmax_d
def _flash_attn_varlen_backward(dout, q, k, v, out, softmax_lse, dq, dk, dv,
cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, softmax_scale, causal, rng_state=None):
maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
# dq, dk, dv are allocated by us so they should already be contiguous
dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
dq, dk, dv, softmax_d, = flash_attn_cuda.varlen_bwd(
dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k,
max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, False, causal, None, rng_state
)
# if dk.isnan().any() or dk.isnan().any() or dv.isnan().any() or softmax_d.isnan().any():
# breakpoint()
return dq, dk, dv, softmax_d
class FlashAttnQKVPackedFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, qkv, dropout_p, softmax_scale, causal, return_softmax):
if softmax_scale is None:
softmax_scale = qkv.shape[-1] ** (-0.5)
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward(
qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], dropout_p, softmax_scale,
causal=causal, return_softmax=return_softmax and dropout_p > 0
)
ctx.save_for_backward(q, k, v, out_padded, softmax_lse, rng_state)
ctx.dropout_p = dropout_p
ctx.softmax_scale = softmax_scale
ctx.causal = causal
return out if not return_softmax else (out, softmax_lse, S_dmask)
@staticmethod
def backward(ctx, dout, *args):
q, k, v, out, softmax_lse, rng_state = ctx.saved_tensors
qkv_shape = q.shape[:-2] + (3, *q.shape[-2:])
dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
_flash_attn_backward(
dout, q, k, v, out, softmax_lse, dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2],
ctx.dropout_p, ctx.softmax_scale, ctx.causal, rng_state=rng_state
)
dqkv = dqkv[..., :dout.shape[-1]] # We could have padded the head dimension
return dqkv, None, None, None, None
class FlashAttnVarlenQKVPackedFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale, causal, return_softmax):
if softmax_scale is None:
softmax_scale = qkv.shape[-1] ** (-0.5)
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_varlen_forward(
qkv[:, 0], qkv[:, 1], qkv[:, 2], cu_seqlens, cu_seqlens, max_seqlen, max_seqlen,
dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax and dropout_p > 0
)
ctx.save_for_backward(q, k, v, out_padded, softmax_lse, cu_seqlens, rng_state)
ctx.dropout_p = dropout_p
ctx.max_seqlen = max_seqlen
ctx.softmax_scale = softmax_scale
ctx.causal = causal
return out if not return_softmax else (out, softmax_lse, S_dmask)
@staticmethod
def backward(ctx, dout, *args):
q, k, v, out, softmax_lse, cu_seqlens, rng_state = ctx.saved_tensors
qkv_shape = q.shape[:-2] + (3, *q.shape[-2:])
dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
_flash_attn_varlen_backward(
dout, q, k, v, out, softmax_lse, dqkv[:, 0], dqkv[:, 1], dqkv[:, 2],
cu_seqlens, cu_seqlens, ctx.max_seqlen, ctx.max_seqlen,
ctx.dropout_p, ctx.softmax_scale, ctx.causal, rng_state=rng_state
)
dqkv = dqkv[..., :dout.shape[-1]] # We could have padded the head dimension
return dqkv, None, None, None, None, None, None
class FlashAttnKVPackedFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, q, kv, dropout_p, softmax_scale, causal, return_softmax):
if softmax_scale is None:
softmax_scale = q.shape[-1] ** (-0.5)
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward(
q, kv[:, :, 0], kv[:, :, 1], dropout_p, softmax_scale, causal=causal,
return_softmax=return_softmax and dropout_p > 0
)
ctx.save_for_backward(q, k, v, out_padded, softmax_lse, rng_state)
ctx.dropout_p = dropout_p
ctx.softmax_scale = softmax_scale
ctx.causal = causal
return out if not return_softmax else (out, softmax_lse, S_dmask)
@staticmethod
def backward(ctx, dout, *args):
q, k, v, out, softmax_lse, rng_state = ctx.saved_tensors
dq = torch.empty_like(q)
kv_shape = k.shape[:-2] + (2, *k.shape[-2:])
dkv = torch.empty(kv_shape, dtype=k.dtype, device=k.device)
_flash_attn_backward(
dout, q, k, v, out, softmax_lse,
dq, dkv[:, :, 0], dkv[:, :, 1], ctx.dropout_p, ctx.softmax_scale, ctx.causal,
rng_state=rng_state
)
dq = dq[..., :dout.shape[-1]] # We could have padded the head dimension
dkv = dkv[..., :dout.shape[-1]]
return dq, dkv, None, None, None, None
class FlashAttnVarlenKVPackedFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, q, kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p,
softmax_scale, causal, return_softmax):
if softmax_scale is None:
softmax_scale = q.shape[-1] ** (-0.5)
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_varlen_forward(
q, kv[:, 0], kv[:, 1], cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax and dropout_p > 0
)
ctx.save_for_backward(q, k, v, out_padded, softmax_lse,
cu_seqlens_q, cu_seqlens_k, rng_state)
ctx.dropout_p = dropout_p
ctx.max_seqlen_q = max_seqlen_q
ctx.max_seqlen_k = max_seqlen_k
ctx.softmax_scale = softmax_scale
ctx.causal = causal
return out if not return_softmax else (out, softmax_lse, S_dmask)
@staticmethod
def backward(ctx, dout, *args):
q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors
dq = torch.empty_like(q)
kv_shape = k.shape[:-2] + (2, *k.shape[-2:])
dkv = torch.empty(kv_shape, dtype=k.dtype, device=k.device)
_flash_attn_varlen_backward(
dout, q, k, v, out, softmax_lse, dq, dkv[:, 0], dkv[:, 1],
cu_seqlens_q, cu_seqlens_k, ctx.max_seqlen_q, ctx.max_seqlen_k,
ctx.dropout_p, ctx.softmax_scale, ctx.causal, rng_state=rng_state
)
dq = dq[..., :dout.shape[-1]] # We could have padded the head dimension
dkv = dkv[..., :dout.shape[-1]]
return dq, dkv, None, None, None, None, None, None, None, None
class FlashAttnFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, q, k, v, dropout_p, softmax_scale, causal, return_softmax):
if softmax_scale is None:
softmax_scale = q.shape[-1] ** (-0.5)
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward(
q, k, v, dropout_p, softmax_scale, causal=causal,
return_softmax=return_softmax and dropout_p > 0
)
ctx.save_for_backward(q, k, v, out_padded, softmax_lse, rng_state)
ctx.dropout_p = dropout_p
ctx.softmax_scale = softmax_scale
ctx.causal = causal
return out if not return_softmax else (out, softmax_lse, S_dmask)
@staticmethod
def backward(ctx, dout, *args):
q, k, v, out, softmax_lse, rng_state = ctx.saved_tensors
dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
_flash_attn_backward(
dout, q, k, v, out, softmax_lse,
dq, dk, dv, ctx.dropout_p, ctx.softmax_scale, ctx.causal,
rng_state=rng_state
)
dq = dq[..., :dout.shape[-1]] # We could have padded the head dimension
dk = dk[..., :dout.shape[-1]]
dv = dv[..., :dout.shape[-1]]
return dq, dk, dv, None, None, None, None, None, None, None, None
class FlashAttnVarlenFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p,
softmax_scale, causal, return_softmax):
if softmax_scale is None:
softmax_scale = q.shape[-1] ** (-0.5)
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_varlen_forward(
q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax and dropout_p > 0
)
ctx.save_for_backward(q, k, v, out_padded, softmax_lse,
cu_seqlens_q, cu_seqlens_k, rng_state)
ctx.dropout_p = dropout_p
ctx.max_seqlen_q = max_seqlen_q
ctx.max_seqlen_k = max_seqlen_k
ctx.softmax_scale = softmax_scale
ctx.causal = causal
return out if not return_softmax else (out, softmax_lse, S_dmask)
@staticmethod
def backward(ctx, dout, *args):
q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors
dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
_flash_attn_varlen_backward(
dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k,
ctx.max_seqlen_q, ctx.max_seqlen_k, ctx.dropout_p, ctx.softmax_scale, ctx.causal,
rng_state=rng_state
)
dq = dq[..., :dout.shape[-1]] # We could have padded the head dimension
dk = dk[..., :dout.shape[-1]]
dv = dv[..., :dout.shape[-1]]
return dq, dk, dv, None, None, None, None, None, None, None, None
def flash_attn_qkvpacked_func(qkv, dropout_p=0.0, softmax_scale=None, causal=False,
return_attn_probs=False):
"""dropout_p should be set to 0.0 during evaluation
If Q, K, V are already stacked into 1 tensor, this function will be faster than
calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
of the gradients of Q, K, V.
Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
than Q. Note that the number of heads in KV must be divisible by the number of heads in Q.
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
Arguments:
qkv: (batch_size, seqlen, 3, nheads, headdim)
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
testing only. The returned probabilities are not guaranteed to be correct
(they might not have the right scaling).
Return:
out: (batch_size, seqlen, nheads, headdim).
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
normalization factor).
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
The output of softmax (possibly with different scaling). It also encodes the dropout
pattern (negative means that location was dropped, nonnegative means it was kept).
"""
return FlashAttnQKVPackedFunc.apply(qkv, dropout_p, softmax_scale, causal, return_attn_probs)
def flash_attn_kvpacked_func(q, kv, dropout_p=0.0, softmax_scale=None, causal=False,
return_attn_probs=False):
"""dropout_p should be set to 0.0 during evaluation
If K, V are already stacked into 1 tensor, this function will be faster than
calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
of the gradients of K, V.
Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
than Q. Note that the number of heads in KV must be divisible by the number of heads in Q.
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
Arguments:
q: (batch_size, seqlen, nheads, headdim)
kv: (batch_size, seqlen, 2, nheads_k, headdim)
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
testing only. The returned probabilities are not guaranteed to be correct
(they might not have the right scaling).
Return:
out: (batch_size, seqlen, nheads, headdim).
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
normalization factor).
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
The output of softmax (possibly with different scaling). It also encodes the dropout
pattern (negative means that location was dropped, nonnegative means it was kept).
"""
return FlashAttnKVPackedFunc.apply(q, kv, dropout_p, softmax_scale, causal, return_attn_probs)
def flash_attn_func(q, k, v, dropout_p=0.0, softmax_scale=None, causal=False,
return_attn_probs=False):
"""dropout_p should be set to 0.0 during evaluation
Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
than Q. Note that the number of heads in KV must be divisible by the number of heads in Q.
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
Arguments:
q: (batch_size, seqlen, nheads, headdim)
k: (batch_size, seqlen, nheads_k, headdim)
v: (batch_size, seqlen, nheads_k, headdim)
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
testing only. The returned probabilities are not guaranteed to be correct
(they might not have the right scaling).
Return:
out: (batch_size, seqlen, nheads, headdim).
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
normalization factor).
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
The output of softmax (possibly with different scaling). It also encodes the dropout
pattern (negative means that location was dropped, nonnegative means it was kept).
"""
return FlashAttnFunc.apply(q, k, v, dropout_p, softmax_scale, causal, return_attn_probs)
def flash_attn_varlen_qkvpacked_func(qkv, cu_seqlens, max_seqlen, dropout_p=0.0, softmax_scale=None,
causal=False, return_attn_probs=False):
"""dropout_p should be set to 0.0 during evaluation
If Q, K, V are already stacked into 1 tensor, this function will be faster than
calling flash_attn_varlen_func on Q, K, V since the backward pass avoids explicit concatenation
of the gradients of Q, K, V.
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
Arguments:
qkv: (total, 3, nheads, headdim), where total = total number of tokens in the batch.
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into qkv.
max_seqlen: int. Maximum sequence length in the batch.
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
testing only. The returned probabilities are not guaranteed to be correct
(they might not have the right scaling).
Return:
out: (total, nheads, headdim).
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
normalization factor).
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
The output of softmax (possibly with different scaling). It also encodes the dropout
pattern (negative means that location was dropped, nonnegative means it was kept).
"""
return FlashAttnVarlenQKVPackedFunc.apply(
qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale, causal, return_attn_probs
)
def flash_attn_varlen_kvpacked_func(q, kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p=0.0, softmax_scale=None, causal=False,
return_attn_probs=False):
"""dropout_p should be set to 0.0 during evaluation
If K, V are already stacked into 1 tensor, this function will be faster than
calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
of the gradients of K, V.
Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
than Q. Note that the number of heads in KV must be divisible by the number of heads in Q.
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
Arguments:
q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.
kv: (total_k, 2, nheads_k, headdim), where total_k = total number of key tokens in the batch.
cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into q.
cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into kv.
max_seqlen_q: int. Maximum query sequence length in the batch.
max_seqlen_k: int. Maximum key sequence length in the batch.
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
testing only. The returned probabilities are not guaranteed to be correct
(they might not have the right scaling).
Return:
out: (total, nheads, headdim).
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
normalization factor).
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
The output of softmax (possibly with different scaling). It also encodes the dropout
pattern (negative means that location was dropped, nonnegative means it was kept).
"""
return FlashAttnVarlenKVPackedFunc.apply(
q, kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, softmax_scale, causal, return_attn_probs
)
def flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p=0.0, softmax_scale=None, causal=False,
return_attn_probs=False):
"""dropout_p should be set to 0.0 during evaluation
Supports multi-query and grouped-query attention (MQA/GQA) by passing in K, V with fewer heads
than Q. Note that the number of heads in K, V must be divisible by the number of heads in Q.
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
Arguments:
q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.
k: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch.
v: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch.
cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into q.
cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into kv.
max_seqlen_q: int. Maximum query sequence length in the batch.
max_seqlen_k: int. Maximum key sequence length in the batch.
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
testing only. The returned probabilities are not guaranteed to be correct
(they might not have the right scaling).
Return:
out: (total, nheads, headdim).
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
normalization factor).
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
The output of softmax (possibly with different scaling). It also encodes the dropout
pattern (negative means that location was dropped, nonnegative means it was kept).
"""
return FlashAttnVarlenFunc.apply(
q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, softmax_scale, causal, return_attn_probs
)