flash-attention/flash_attn/losses/cross_entropy_parallel.py

123 lines
5.7 KiB
Python

# Inspired by https://github.com/NVIDIA/apex/blob/master/apex/transformer/tensor_parallel/cross_entropy.py
# But we make it much faster: we compute the local loss and the LSE, and by exchanging the LSE and
# the losses we can get the global loss. There's no need to do it step by step
# (compute local max, exchange, compute exp, compute local sum, exchange, etc.)
import torch
import torch.nn as nn
import xentropy_cuda_lib
from apex.transformer.parallel_state import get_tensor_model_parallel_group
from apex.transformer.parallel_state import get_tensor_model_parallel_rank
from apex.transformer.parallel_state import get_tensor_model_parallel_world_size
from apex.transformer.tensor_parallel.utils import VocabUtility
# `all_gather_into_tensor` and `reduce_scatter_tensor` are new placeholders for
# `_all_gather_base` and `_reduce_scatter_base`. They require the most recent
# version of PyTorch. The following 4 lines are for backward comparability with
# older PyTorch.
if "all_gather_into_tensor" not in dir(torch.distributed):
torch.distributed.all_gather_into_tensor = torch.distributed._all_gather_base
if "reduce_scatter_tensor" not in dir(torch.distributed):
torch.distributed.reduce_scatter_tensor = torch.distributed._reduce_scatter_base
class SoftmaxCrossEntropyLossParallelFn(torch.autograd.Function):
@staticmethod
def forward(ctx, logits_parallel, labels, smoothing=0.0, ignored_index=-100,
inplace_backward=False):
"""
logits_parallel: (batch, vocab_size / world_size)
labels: (batch,)
"""
assert smoothing == 0.0, 'smoothing != 0.0 is not yet implemented, file an issue if you need it'
batch, partition_vocab_size = logits_parallel.shape
assert labels.shape == (batch,)
rank = get_tensor_model_parallel_rank()
world_size = get_tensor_model_parallel_world_size()
if world_size == 1:
losses, lse = xentropy_cuda_lib.forward(logits_parallel, labels, smoothing)
losses.masked_fill_(labels==ignored_index, 0)
labels_local = labels
else:
vocab_start_index, vocab_end_index = VocabUtility.vocab_range_from_per_partition_vocab_size(
partition_vocab_size, get_tensor_model_parallel_rank(),
get_tensor_model_parallel_world_size()
)
# Create a mask of valid vocab ids (1 means it needs to be masked).
labels_mask = (labels < vocab_start_index) | (labels >= vocab_end_index)
ignored_mask = labels == ignored_index
labels_local = torch.where(ignored_mask, labels, labels - vocab_start_index)
masked_labels = labels_local.clone()
masked_labels[labels_mask] = ignored_index
losses, lse_local = xentropy_cuda_lib.forward(logits_parallel, masked_labels, smoothing)
assert lse_local.shape == (batch,)
assert losses.shape == (batch,)
losses.masked_fill_(masked_labels==ignored_index, 0)
lse_allgather = torch.empty(world_size, batch, dtype=lse_local.dtype,
device=lse_local.device)
handle_lse = torch.distributed.all_gather_into_tensor(
lse_allgather, lse_local.contiguous(),
group=get_tensor_model_parallel_group(), async_op=True
)
handle_losses = torch.distributed.all_reduce(
losses, op=torch.distributed.ReduceOp.SUM,
group=get_tensor_model_parallel_group(), async_op=True
)
handle_lse.wait()
lse = torch.logsumexp(lse_allgather, dim=0)
# The losses are going to be lse_local - predicted_logit, we just have to subtract
# the lse_local and add the lse (global).
rank_per_sample = torch.div(labels, partition_vocab_size, rounding_mode='floor')
lse_local = lse_allgather[rank_per_sample,
torch.arange(batch, device=lse_allgather.device)]
handle_losses.wait()
losses += lse - lse_local
losses.masked_fill_(ignored_mask, 0)
ctx.save_for_backward(logits_parallel, lse, labels_local)
ctx.smoothing = smoothing
ctx.ignored_index = ignored_index
ctx.inplace_backward = inplace_backward
return losses
@staticmethod
def backward(ctx, grad_loss):
logits_parallel, lse, labels = ctx.saved_tensors
if not grad_loss.is_contiguous():
grad_loss = grad_loss.contiguous()
grad_loss.masked_fill_(labels==ctx.ignored_index, 0)
grad_logits = xentropy_cuda_lib.backward(grad_loss, logits_parallel, lse, labels,
ctx.smoothing, ctx.inplace_backward)
return grad_logits, None, None, None, None, None
class CrossEntropyLossParallel(nn.Module):
def __init__(self, ignore_index=-100, reduction='mean', label_smoothing=0.0,
inplace_backward=False):
super().__init__()
if reduction not in ['mean', 'none']:
raise NotImplementedError("Only support reduction = 'mean' or 'none'")
self.ignore_index = ignore_index
self.reduction = reduction
self.label_smoothing = label_smoothing
self.inplace_backward = inplace_backward
def forward(self, input, target):
assert input.is_cuda and target.is_cuda
# SoftmaxCrossEntropyLoss implicitly casts to float
loss = SoftmaxCrossEntropyLossParallelFn.apply(
input, target, self.label_smoothing, self.ignore_index, self.inplace_backward
)
if self.reduction == 'mean':
return loss.sum() / (target != self.ignore_index).sum()
else:
return loss