* hard-code alibi in fwd * use params.h as hun_heads * hard-code alibi in bwd * add alibi on/off option * compute alibi_start, ratio outside of kernels * fix minor merge conflict * add test_alibi.py * change apply_alibi() location before masking * add alibi in splitkv kernel * fix backward func # of returns * add out-of-bound check in apply_alibi() * update test_alibi.py * update test_alibi.py for kvcache * simplify alibi parameter interface * fix performance issue by computing alibi outside of branch * update test_flash_attn_varlen_func() for left padding * implement alibi_slopes (b, nh) loading * optimize apply_alibi() a bit * update test cases for alibi_slopes loading * reflect stylistic comments * disable "seqlenq_ngroups_swapped" when using alibi --------- Co-authored-by: monk.detective <monk.detective@kakaobrain.com>
1007 lines
36 KiB
Python
1007 lines
36 KiB
Python
import math
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from einops import rearrange, repeat
|
|
|
|
from flash_attn import (flash_attn_func, flash_attn_kvpacked_func,
|
|
flash_attn_qkvpacked_func, flash_attn_varlen_func,
|
|
flash_attn_varlen_kvpacked_func,
|
|
flash_attn_varlen_qkvpacked_func,
|
|
flash_attn_with_kvcache)
|
|
from flash_attn.bert_padding import pad_input, unpad_input
|
|
from flash_attn.flash_attn_interface import _get_block_size
|
|
from flash_attn.flash_attn_triton import \
|
|
flash_attn_func as flash_attn_func_triton
|
|
from flash_attn.layers.rotary import apply_rotary_emb
|
|
|
|
MAX_HEADDIM_SM8x = 192
|
|
|
|
|
|
is_sm75 = torch.cuda.get_device_capability("cuda") == (7, 5)
|
|
is_sm8x = torch.cuda.get_device_capability("cuda")[0] == 8
|
|
is_sm80 = torch.cuda.get_device_capability("cuda") == (8, 0)
|
|
is_sm90 = torch.cuda.get_device_capability("cuda") == (9, 0)
|
|
|
|
|
|
def generate_alibi(max_seq_len, num_attention_heads, tp_world_size, tp_index, key_padding_mask=None, device="cuda"):
|
|
def get_slopes(n):
|
|
def get_slopes_power_of_2(n):
|
|
start = (2 ** (-2 ** -(math.log2(n) - 3)))
|
|
ratio = start
|
|
return [start * ratio ** i for i in range(n)]
|
|
|
|
if math.log2(n).is_integer():
|
|
return get_slopes_power_of_2(n)
|
|
else:
|
|
closest_power_of_2 = 2 ** math.floor(math.log2(n))
|
|
return get_slopes_power_of_2(closest_power_of_2) + get_slopes(2 * closest_power_of_2)[0::2][
|
|
:n - closest_power_of_2]
|
|
|
|
slopes = torch.tensor(get_slopes(num_attention_heads)).to(device=device)
|
|
# Select the part of the tensor that corresponds to our tensor parallel index.
|
|
assert (num_attention_heads/tp_world_size).is_integer(
|
|
), "it works only when (num_attention_heads/tp_world_size) is integer"
|
|
nh_tp = num_attention_heads // tp_world_size
|
|
slopes = slopes[nh_tp * tp_index:nh_tp * (tp_index + 1)]
|
|
|
|
if (key_padding_mask is None):
|
|
arange_tensor = rearrange(torch.arange(max_seq_len), "sqk -> 1 sqk").to(device=device)
|
|
else:
|
|
arange_tensor = (key_padding_mask.cumsum(dim=-1, dtype=slopes.dtype) - 1) \
|
|
.masked_fill_(~key_padding_mask, torch.finfo(torch.float).min).to(device=device)
|
|
|
|
arange_tensor = rearrange(arange_tensor, 'b sqk -> b 1 1 sqk')
|
|
# (1, nheads, 1, seqlen_k) or (batch, nheads, 1, seqlen_k)
|
|
alibi_tensor = rearrange(slopes, 'nh -> 1 nh 1 1') * arange_tensor
|
|
|
|
return alibi_tensor, slopes
|
|
|
|
|
|
def generate_random_padding_mask(max_seqlen, batch_size, device, mode="random", right_padding=True):
|
|
assert mode in ["full", "random", "third"]
|
|
if mode == "full":
|
|
lengths = torch.full((batch_size, 1), max_seqlen,
|
|
device=device, dtype=torch.int32)
|
|
elif mode == "random":
|
|
lengths = torch.randint(
|
|
max(1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device
|
|
)
|
|
elif mode == "third":
|
|
lengths = torch.randint(
|
|
max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device)
|
|
if right_padding:
|
|
padding_mask = (
|
|
repeat(torch.arange(max_seqlen, device=device),
|
|
"s -> b s", b=batch_size) < lengths
|
|
)
|
|
else:
|
|
padding_mask = (
|
|
repeat(torch.arange(start=max_seqlen-1, end=-1, step=-1, device=device),
|
|
"s -> b s", b=batch_size) < lengths
|
|
)
|
|
return padding_mask
|
|
|
|
|
|
def generate_qkv(
|
|
q, k, v, query_padding_mask=None, key_padding_mask=None, kvpacked=False, qkvpacked=False
|
|
):
|
|
"""
|
|
Arguments:
|
|
q: (batch_size, seqlen_q, nheads, d)
|
|
k: (batch_size, seqlen_k, nheads_k, d)
|
|
v: (batch_size, seqlen_k, nheads_k, d)
|
|
query_padding_mask: (batch_size, seqlen), bool
|
|
key_padding_mask: (batch_size, seqlen), bool
|
|
"""
|
|
assert not (kvpacked and qkvpacked)
|
|
batch_size, seqlen_q, nheads, d = q.shape
|
|
_, seqlen_k, nheads_k, _ = k.shape
|
|
assert k.shape == (batch_size, seqlen_k, nheads_k, d)
|
|
assert v.shape == (batch_size, seqlen_k, nheads_k, d)
|
|
|
|
if query_padding_mask is not None:
|
|
q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(
|
|
q, query_padding_mask)
|
|
|
|
def output_pad_fn(output_unpad): return pad_input(
|
|
output_unpad, indices_q, batch_size, seqlen_q
|
|
)
|
|
else:
|
|
q_unpad = rearrange(q, "b s h d -> (b s) h d")
|
|
cu_seqlens_q = torch.arange(
|
|
0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device
|
|
)
|
|
max_seqlen_q = seqlen_q
|
|
|
|
def output_pad_fn(output_unpad): return rearrange(
|
|
output_unpad, "(b s) h d -> b s h d", b=batch_size
|
|
)
|
|
|
|
if key_padding_mask is not None:
|
|
k_unpad, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(
|
|
k, key_padding_mask)
|
|
v_unpad, _, _, _ = unpad_input(v, key_padding_mask)
|
|
else:
|
|
k_unpad = rearrange(k, "b s h d -> (b s) h d")
|
|
v_unpad = rearrange(v, "b s h d -> (b s) h d")
|
|
cu_seqlens_k = torch.arange(
|
|
0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device
|
|
)
|
|
max_seqlen_k = seqlen_k
|
|
|
|
if qkvpacked:
|
|
assert (query_padding_mask == key_padding_mask).all()
|
|
assert nheads == nheads_k
|
|
qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
|
|
qkv = torch.stack([q, k, v], dim=2)
|
|
if query_padding_mask is not None:
|
|
def dqkv_pad_fn(dqkv_unpad): return pad_input(
|
|
dqkv_unpad, indices_q, batch_size, seqlen_q)
|
|
else:
|
|
def dqkv_pad_fn(dqkv_unpad): return rearrange(
|
|
dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
|
|
)
|
|
return (
|
|
qkv_unpad.detach().requires_grad_(),
|
|
cu_seqlens_q,
|
|
max_seqlen_q,
|
|
qkv.detach().requires_grad_(),
|
|
output_pad_fn,
|
|
dqkv_pad_fn,
|
|
)
|
|
elif kvpacked:
|
|
kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
|
|
kv = torch.stack([k, v], dim=2)
|
|
dq_pad_fn = output_pad_fn
|
|
if key_padding_mask is not None:
|
|
def dkv_pad_fn(dkv_unpad): return pad_input(
|
|
dkv_unpad, indices_k, batch_size, seqlen_k)
|
|
else:
|
|
def dkv_pad_fn(dkv_unpad): return rearrange(
|
|
dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
|
|
)
|
|
return (
|
|
q_unpad.detach().requires_grad_(),
|
|
kv_unpad.detach().requires_grad_(),
|
|
cu_seqlens_q,
|
|
cu_seqlens_k,
|
|
max_seqlen_q,
|
|
max_seqlen_k,
|
|
q.detach().requires_grad_(),
|
|
kv.detach().requires_grad_(),
|
|
output_pad_fn,
|
|
dq_pad_fn,
|
|
dkv_pad_fn,
|
|
)
|
|
else:
|
|
dq_pad_fn = output_pad_fn
|
|
if key_padding_mask is not None:
|
|
def dk_pad_fn(dk_unpad): return pad_input(
|
|
dk_unpad, indices_k, batch_size, seqlen_k)
|
|
else:
|
|
def dk_pad_fn(dk_unpad): return rearrange(
|
|
dk_unpad, "(b s) h d -> b s h d", b=batch_size)
|
|
return (
|
|
q_unpad.detach().requires_grad_(),
|
|
k_unpad.detach().requires_grad_(),
|
|
v_unpad.detach().requires_grad_(),
|
|
cu_seqlens_q,
|
|
cu_seqlens_k,
|
|
max_seqlen_q,
|
|
max_seqlen_k,
|
|
q.detach().requires_grad_(),
|
|
k.detach().requires_grad_(),
|
|
v.detach().requires_grad_(),
|
|
output_pad_fn,
|
|
dq_pad_fn,
|
|
dk_pad_fn,
|
|
)
|
|
|
|
|
|
def construct_local_mask(
|
|
seqlen_q,
|
|
seqlen_k,
|
|
window_size=(-1, -1), # -1 means infinite window size
|
|
query_padding_mask=None,
|
|
key_padding_mask=None,
|
|
device=None,
|
|
):
|
|
row_idx = rearrange(torch.arange(
|
|
seqlen_q, device=device, dtype=torch.long), "s -> s 1")
|
|
col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
|
|
sk = (
|
|
seqlen_k
|
|
if key_padding_mask is None
|
|
else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
|
|
)
|
|
sq = (
|
|
seqlen_q
|
|
if query_padding_mask is None
|
|
else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
|
|
)
|
|
if window_size[0] < 0:
|
|
return col_idx > row_idx + sk - sq + window_size[1]
|
|
else:
|
|
sk = torch.full_like(
|
|
col_idx, seqlen_k) if key_padding_mask is None else sk
|
|
return torch.logical_or(
|
|
col_idx > torch.minimum(row_idx + sk - sq + window_size[1], sk),
|
|
col_idx < row_idx + sk - sq - window_size[0],
|
|
)
|
|
|
|
|
|
def attention_ref(
|
|
q,
|
|
k,
|
|
v,
|
|
query_padding_mask=None,
|
|
key_padding_mask=None,
|
|
dropout_p=0.0,
|
|
dropout_mask=None,
|
|
causal=False,
|
|
window_size=(-1, -1), # -1 means infinite window size
|
|
upcast=True,
|
|
reorder_ops=False,
|
|
bias=None
|
|
):
|
|
"""
|
|
Arguments:
|
|
q: (batch_size, seqlen_q, nheads, head_dim)
|
|
k: (batch_size, seqlen_k, nheads_k, head_dim)
|
|
v: (batch_size, seqlen_k, nheads_k, head_dim)
|
|
query_padding_mask: (batch_size, seqlen_q)
|
|
key_padding_mask: (batch_size, seqlen_k)
|
|
dropout_p: float
|
|
dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
|
|
causal: whether to apply causal masking
|
|
window_size: (int, int), left and right window size
|
|
upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
|
|
output back to fp16/bf16.
|
|
reorder_ops: whether to change the order of operations (scaling k instead of scaling k, etc.)
|
|
without changing the math. This is to estimate the numerical error from operation
|
|
reordering.
|
|
Output:
|
|
output: (batch_size, seqlen_q, nheads, head_dim)
|
|
attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
|
|
"""
|
|
if causal:
|
|
window_size = (window_size[0], 0)
|
|
dtype_og = q.dtype
|
|
if upcast:
|
|
q, k, v = q.float(), k.float(), v.float()
|
|
seqlen_q, seqlen_k = q.shape[1], k.shape[1]
|
|
k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
|
|
v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
|
|
d = q.shape[-1]
|
|
if not reorder_ops:
|
|
scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
|
|
else:
|
|
scores = torch.einsum("bthd,bshd->bhts", q, k / math.sqrt(d))
|
|
if bias is not None:
|
|
bias = bias.to(scores.dtype)
|
|
scores += bias
|
|
if key_padding_mask is not None:
|
|
scores.masked_fill_(rearrange(~key_padding_mask,
|
|
"b s -> b 1 1 s"), float("-inf"))
|
|
if window_size[0] >= 0 or window_size[1] >= 0:
|
|
local_mask = construct_local_mask(
|
|
seqlen_q,
|
|
seqlen_k,
|
|
window_size,
|
|
query_padding_mask,
|
|
key_padding_mask,
|
|
q.device,
|
|
)
|
|
scores.masked_fill_(local_mask, float("-inf"))
|
|
attention = torch.softmax(scores, dim=-1)
|
|
# Some rows might be completely masked out so we fill them with zero instead of NaN
|
|
if window_size[0] >= 0 or window_size[1] >= 0:
|
|
attention = attention.masked_fill(
|
|
torch.all(local_mask, dim=-1, keepdim=True), 0.0)
|
|
# We want to mask here so that the attention matrix doesn't have any NaNs
|
|
# Otherwise we'll get NaN in dV
|
|
if query_padding_mask is not None:
|
|
attention = attention.masked_fill(
|
|
rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
|
|
dropout_scaling = 1.0 / (1 - dropout_p)
|
|
# attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
|
|
# output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
|
|
if dropout_mask is not None:
|
|
attention_drop = attention.masked_fill(~dropout_mask, 0.0)
|
|
else:
|
|
attention_drop = attention
|
|
output = torch.einsum(
|
|
"bhts,bshd->bthd", attention_drop, v * dropout_scaling)
|
|
if query_padding_mask is not None:
|
|
output.masked_fill_(
|
|
rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
|
|
return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)
|
|
|
|
|
|
def attention_kvpacked_ref(
|
|
q,
|
|
kv,
|
|
query_padding_mask=None,
|
|
key_padding_mask=None,
|
|
dropout_p=0.0,
|
|
dropout_mask=None,
|
|
causal=False,
|
|
window_size=(-1, -1), # -1 means infinite window size
|
|
upcast=True,
|
|
reorder_ops=False,
|
|
):
|
|
return attention_ref(
|
|
q,
|
|
kv[:, :, 0],
|
|
kv[:, :, 1],
|
|
query_padding_mask,
|
|
key_padding_mask,
|
|
dropout_p,
|
|
dropout_mask,
|
|
upcast=upcast,
|
|
causal=causal,
|
|
window_size=window_size,
|
|
reorder_ops=reorder_ops,
|
|
)
|
|
|
|
|
|
def attention_qkvpacked_ref(
|
|
qkv,
|
|
key_padding_mask=None,
|
|
dropout_p=0.0,
|
|
dropout_mask=None,
|
|
causal=False,
|
|
window_size=(-1, -1), # -1 means infinite window size
|
|
upcast=True,
|
|
reorder_ops=False,
|
|
):
|
|
return attention_ref(
|
|
qkv[:, :, 0],
|
|
qkv[:, :, 1],
|
|
qkv[:, :, 2],
|
|
key_padding_mask,
|
|
key_padding_mask,
|
|
dropout_p,
|
|
dropout_mask,
|
|
upcast=upcast,
|
|
causal=causal,
|
|
window_size=window_size,
|
|
reorder_ops=reorder_ops,
|
|
)
|
|
|
|
|
|
def generate_sparsity_mask(seqlen, sparsity=0.3):
|
|
repeats = seqlen // 16 // 2
|
|
# mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda'),
|
|
# torch.tensor([0, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
|
|
# mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda'),
|
|
# torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
|
|
# mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
|
|
# mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
|
|
nrow, ncol = seqlen // 16, seqlen // 256
|
|
mask = torch.rand(nrow, ncol, device="cuda") < sparsity
|
|
return mask
|
|
|
|
|
|
def attention_blocksparse_ref(qkv, blockmask, attn_mask, dropout_p, dropout_mask):
|
|
"""
|
|
Arguments:
|
|
qkv: (batch_size, seqlen, 3, nheads, head_dim)
|
|
blockmask: (seqlen / 16, seqlen / 256)
|
|
attn_mask: (batch_size, seqlen)
|
|
dropout_p: float
|
|
dropout_mask: (batch_size, nheads, seqlen, seqlen)
|
|
Output:
|
|
output: (batch_size, seqlen, nheads, head_dim)
|
|
attention: softmax after dropout
|
|
"""
|
|
q, k, v = qkv.float().unbind(dim=2)
|
|
d = qkv.shape[-1]
|
|
seqlen = qkv.shape[1]
|
|
scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
|
|
scores.masked_fill_(rearrange(~attn_mask, "b s -> b 1 1 s"), float("-inf"))
|
|
blockmask = repeat(blockmask, "s_16 s_256 -> (s_16 16) (s_256 256)")
|
|
blockmask = blockmask[:seqlen, :seqlen]
|
|
scores.masked_fill_(rearrange(~blockmask, "t s -> 1 1 t s"), float("-inf"))
|
|
attention = torch.softmax(scores, dim=-1)
|
|
attention = attention.masked_fill(
|
|
rearrange(~attn_mask, "b s -> b 1 s 1"), 0.0)
|
|
attention = attention.masked_fill_(
|
|
rearrange(~blockmask, "t s -> 1 1 t s"), 0.0)
|
|
attention_drop = attention.masked_fill(
|
|
~dropout_mask, 0.0) / (1 - dropout_p)
|
|
output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
|
|
output.masked_fill_(rearrange(~attn_mask, "b s -> b s 1 1"), 0)
|
|
return output.to(dtype=qkv.dtype), attention.to(dtype=qkv.dtype)
|
|
|
|
|
|
def convert_flash_attn_S_to_softmax(
|
|
S,
|
|
seqlen_q,
|
|
seqlen_k,
|
|
query_padding_mask,
|
|
key_padding_mask,
|
|
head_dim,
|
|
is_dropout,
|
|
causal=False,
|
|
window_size=(-1, -1), # -1 means infinite window size
|
|
):
|
|
"""FlashAttention stores the S matrix in a different way.
|
|
Arguments:
|
|
S: (batch_size, nheads, seqlen_q_rounded, seqlen_k_rounded)
|
|
query_padding_mask: (batch_size, seqlen_q_rounded)
|
|
key_padding_mask: (batch_size, seqlen_k_rounded)
|
|
"""
|
|
if causal:
|
|
window_size = (window_size[0], 0)
|
|
seqlen_q_rounded, seqlen_k_rounded = S.shape[-2:]
|
|
warps_n = 4
|
|
blocksize_m, blocksize_n = _get_block_size(
|
|
S.device, head_dim, is_dropout, causal)
|
|
nblocks_n = (seqlen_k_rounded + blocksize_n - 1) // blocksize_n
|
|
nblocks_m = (seqlen_q_rounded + blocksize_m - 1) // blocksize_m
|
|
mmas_n = (blocksize_n + 16 - 1) // 16
|
|
S_flat = rearrange(
|
|
S,
|
|
"b h (nblocks_m blocksize_m) (nblocks_n blocksize_n) -> b h nblocks_m nblocks_n (blocksize_m blocksize_n)",
|
|
blocksize_m=blocksize_m,
|
|
blocksize_n=blocksize_n,
|
|
)
|
|
S_converted = rearrange(
|
|
S_flat,
|
|
"b h nblocks_m nblocks_n (mmas_n mmas_m warps_n eight four c2 c1 c0) -> b h (nblocks_m mmas_m warps_n c1 eight) (nblocks_n mmas_n c2 four c0)",
|
|
mmas_n=mmas_n,
|
|
warps_n=warps_n,
|
|
eight=8,
|
|
c0=2,
|
|
c1=2,
|
|
c2=2,
|
|
four=4,
|
|
)
|
|
|
|
if window_size[0] >= 0 or window_size[1] >= 0:
|
|
local_mask = construct_local_mask(
|
|
seqlen_q,
|
|
seqlen_k,
|
|
window_size,
|
|
query_padding_mask,
|
|
key_padding_mask,
|
|
S.device,
|
|
)
|
|
local_mask = F.pad(
|
|
local_mask,
|
|
(0, seqlen_k_rounded - seqlen_k, 0, seqlen_q_rounded - seqlen_q),
|
|
value=True,
|
|
)
|
|
S_converted.masked_fill_(local_mask, 0.0)
|
|
|
|
# Need to zero out things not in attention_mask in case S was initialized with random values
|
|
# and some of those values aren't overwritten.
|
|
seqlen_q_og = (
|
|
query_padding_mask.shape[-1] if query_padding_mask is not None else seqlen_q_rounded
|
|
)
|
|
if query_padding_mask is not None:
|
|
query_padding_mask = F.pad(
|
|
query_padding_mask, (0, seqlen_q_rounded - seqlen_q_og))
|
|
S_converted = S_converted.masked_fill(
|
|
rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
|
|
seqlen_k_og = key_padding_mask.shape[-1] if key_padding_mask is not None else seqlen_k
|
|
if key_padding_mask is not None:
|
|
key_padding_mask = F.pad(
|
|
key_padding_mask, (0, seqlen_k_rounded - seqlen_k_og))
|
|
S_converted = S_converted.masked_fill(
|
|
rearrange(~key_padding_mask, "b s -> b 1 1 s"), 0.0)
|
|
S_converted = F.pad(S_converted, (0, 0, 0, seqlen_q_og - seqlen_q_rounded))
|
|
S_converted = F.pad(S_converted, (0, seqlen_k_og - seqlen_k_rounded))
|
|
return S_converted[:, :, :seqlen_q, :seqlen_k]
|
|
|
|
|
|
def normalize_flash_attn_S(
|
|
attn_unnorm,
|
|
q,
|
|
k,
|
|
v,
|
|
query_padding_mask=None,
|
|
key_padding_mask=None,
|
|
is_dropout=False,
|
|
causal=False,
|
|
window_size=(-1, -1), # -1 means infinite window size
|
|
):
|
|
"""
|
|
Arguments:
|
|
q: (batch_size, seqlen_q, nheads, head_dim)
|
|
k, v: (batch_size, seqlen_k, nheads, head_dim)
|
|
key_padding_mask: (batch_size, seqlen_q)
|
|
Output:
|
|
softmax_lse: (batch_size, nheads, seqlen_q)
|
|
softmax_max: (batch_size, nheads, seqlen_q)
|
|
"""
|
|
if causal:
|
|
window_size = (window_size[0], 0)
|
|
q, k, v = q.float(), k.float(), v.float()
|
|
_, seqlen_q, _, head_dim = q.shape
|
|
seqlen_k = k.shape[1]
|
|
scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(head_dim), k)
|
|
if key_padding_mask is not None:
|
|
scores.masked_fill_(rearrange(~key_padding_mask,
|
|
"b s -> b 1 1 s"), float("-inf"))
|
|
if window_size[0] >= 0 or window_size[1] >= 0:
|
|
local_mask = construct_local_mask(
|
|
seqlen_q,
|
|
seqlen_k,
|
|
window_size,
|
|
query_padding_mask,
|
|
key_padding_mask,
|
|
q.device,
|
|
)
|
|
scores.masked_fill_(local_mask, float("-inf"))
|
|
_, block_size_n = _get_block_size(
|
|
scores.device, head_dim, is_dropout, causal)
|
|
scores_block = scores.split(block_size_n, dim=-1)
|
|
lse_block = torch.stack([torch.logsumexp(s, dim=-1)
|
|
for s in scores_block], dim=-1)
|
|
lse = torch.logsumexp(lse_block, dim=-1)
|
|
# lse could be -inf (i.e. all values in scores are -inf), and we want to set those to inf
|
|
# so that when we do torch.exp(m - lse), we get 0.0 instead of NaN.
|
|
lse[lse == float("-inf")] = float("inf")
|
|
scores_max_block = torch.stack(
|
|
[torch.amax(s, dim=-1) for s in scores_block], dim=-1)
|
|
cummax_block = torch.cummax(
|
|
scores_max_block.flip(-1), dim=-1).values.flip(-1).unbind(dim=-1)
|
|
attn_unnorm_block = attn_unnorm.split(block_size_n, dim=-1)
|
|
attn_norm = torch.cat(
|
|
[
|
|
a * rearrange(torch.exp(m - lse), "b h s -> b h s 1")
|
|
for a, m in zip(attn_unnorm_block, cummax_block)
|
|
],
|
|
dim=-1,
|
|
)
|
|
if query_padding_mask is not None:
|
|
attn_norm.masked_fill_(
|
|
rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
|
|
return attn_norm.to(dtype=attn_unnorm.dtype)
|
|
|
|
|
|
def get_dropout_fraction(
|
|
dropout_mask,
|
|
query_padding_mask=None,
|
|
key_padding_mask=None,
|
|
causal=False,
|
|
window_size=(-1, -1), # -1 means infinite window size
|
|
):
|
|
"""
|
|
dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k), bool. True means keep, False means drop.
|
|
query_padding_mask: (batch_size, seqlen_q)
|
|
key_padding_mask: (batch_size, seqlen_k)
|
|
"""
|
|
if causal:
|
|
window_size = (window_size[0], 0)
|
|
batch_size, nheads, seqlen_q, seqlen_k = dropout_mask.shape
|
|
dropped = ~dropout_mask
|
|
valid = torch.ones_like(dropout_mask)
|
|
if query_padding_mask is not None:
|
|
dropped.masked_fill_(
|
|
rearrange(~query_padding_mask, "b s -> b 1 s 1"), False)
|
|
valid.masked_fill_(
|
|
rearrange(~query_padding_mask, "b s -> b 1 s 1"), False)
|
|
if key_padding_mask is not None:
|
|
dropped.masked_fill_(
|
|
rearrange(~key_padding_mask, "b s -> b 1 1 s"), False)
|
|
valid.masked_fill_(
|
|
rearrange(~key_padding_mask, "b s -> b 1 1 s"), False)
|
|
if window_size[0] >= 0 or window_size[1] >= 0:
|
|
local_mask = construct_local_mask(
|
|
seqlen_q,
|
|
seqlen_k,
|
|
window_size,
|
|
query_padding_mask,
|
|
key_padding_mask,
|
|
dropout_mask.device,
|
|
)
|
|
dropped.masked_fill_(local_mask, False)
|
|
valid.masked_fill_(local_mask, False)
|
|
dropped_total = dropped.sum()
|
|
return dropped.sum() / valid.sum()
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"dtype", [torch.float16]
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"b_sq",
|
|
[
|
|
(32, 512),
|
|
(16, 1024),
|
|
(8, 2048),
|
|
(4, 4096),
|
|
(2, 8192),
|
|
(1, 16384)
|
|
]
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"nh_hd",
|
|
[
|
|
(32, 64),
|
|
(16, 128),
|
|
(40, 128) # non power of 2 nh
|
|
]
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"tp_world_size", [1, 2, 4]
|
|
)
|
|
def test_flash_attn_func(b_sq, nh_hd, tp_world_size, dtype):
|
|
b, sq = b_sq
|
|
nh, hd = nh_hd
|
|
nh_tp = nh // tp_world_size
|
|
q, k, v = [torch.randn(b, sq, nh_tp, hd, device="cuda",
|
|
dtype=dtype, requires_grad=True) for _ in range(3)]
|
|
dout = torch.rand_like(q)
|
|
|
|
for tp_index in range(tp_world_size):
|
|
alibi, alibi_slopes = generate_alibi(
|
|
max_seq_len=sq,
|
|
num_attention_heads=nh,
|
|
tp_world_size=tp_world_size,
|
|
tp_index=tp_index,
|
|
key_padding_mask=None,
|
|
device="cuda"
|
|
)
|
|
|
|
triton_out = flash_attn_func_triton(
|
|
q, k, v, alibi, True, hd**(-0.5))
|
|
triton_out.backward(dout)
|
|
triton_dq, q.grad = q.grad.clone(), None
|
|
triton_dk, k.grad = k.grad.clone(), None
|
|
triton_dv, v.grad = v.grad.clone(), None
|
|
|
|
flash_out = flash_attn_func(q, k, v, causal=True, alibi_slopes=repeat(alibi_slopes, "nh -> b nh", b=b))
|
|
flash_out.backward(dout)
|
|
flash_dq, q.grad = q.grad.clone(), None
|
|
flash_dk, k.grad = k.grad.clone(), None
|
|
flash_dv, v.grad = v.grad.clone(), None
|
|
|
|
assert torch.allclose(flash_out, triton_out, atol=1e-2, rtol=0.)
|
|
assert torch.allclose(flash_dq, triton_dq, atol=1e-2, rtol=0.)
|
|
assert torch.allclose(flash_dk, triton_dk, atol=1e-2, rtol=0.)
|
|
assert torch.allclose(flash_dv, triton_dv, atol=1e-2, rtol=0.)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"dtype", [torch.float16]
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"right_padding", [True, False]
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"b_sq",
|
|
[
|
|
(32, 512),
|
|
(16, 1024),
|
|
(8, 2048),
|
|
(4, 4096),
|
|
(2, 8192),
|
|
(1, 16384)
|
|
]
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"nh_hd",
|
|
[
|
|
(32, 64),
|
|
(16, 128),
|
|
(40, 128) # non power of 2 nh
|
|
]
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"tp_world_size", [1, 2, 4]
|
|
)
|
|
def test_flash_attn_varlen_func(b_sq, nh_hd, tp_world_size, right_padding, dtype):
|
|
b, sqk = b_sq
|
|
nh, hd = nh_hd
|
|
nh_tp = nh // tp_world_size
|
|
# flash_attn_func_triton(), flash-attention v2 (above v2.1) causal logic are different
|
|
# so only (seqlen_q == 1, causal=False to triton ver.) shows correct results
|
|
# https://github.com/huggingface/text-generation-inference/blob/v1.1.1/server/text_generation_server/models/custom_modeling/mpt_modeling.py#L53-L63
|
|
q = torch.randn(b, 1, nh_tp, hd, device="cuda", dtype=dtype, requires_grad=True)
|
|
k, v = [torch.randn(b, sqk, nh_tp, hd, device="cuda",
|
|
dtype=dtype, requires_grad=True) for _ in range(2)]
|
|
dout = torch.rand_like(q)
|
|
|
|
padding_mask = generate_random_padding_mask(sqk, b, "cuda", "random", right_padding)
|
|
(
|
|
q_unpad,
|
|
k_unpad,
|
|
v_unpad,
|
|
cu_seqlens_q,
|
|
cu_seqlens_k,
|
|
max_seqlen_q,
|
|
max_seqlen_k,
|
|
q,
|
|
k,
|
|
v,
|
|
output_pad_fn,
|
|
dq_pad_fn,
|
|
dk_pad_fn,
|
|
) = generate_qkv(q, k, v, None, padding_mask, kvpacked=False)
|
|
|
|
for tp_index in range(tp_world_size):
|
|
alibi, alibi_slopes = generate_alibi(
|
|
max_seq_len=sqk,
|
|
num_attention_heads=nh,
|
|
tp_world_size=tp_world_size,
|
|
tp_index=tp_index,
|
|
key_padding_mask=padding_mask,
|
|
device="cuda"
|
|
)
|
|
|
|
triton_out = flash_attn_func_triton(
|
|
q, k, v, alibi, False, hd**(-0.5))
|
|
triton_out.backward(dout)
|
|
triton_dq, q.grad = q.grad.clone(), None
|
|
triton_dk, k.grad = k.grad.clone(), None
|
|
triton_dv, v.grad = v.grad.clone(), None
|
|
|
|
flash_out_unpad = flash_attn_varlen_func(
|
|
q_unpad,
|
|
k_unpad,
|
|
v_unpad,
|
|
cu_seqlens_q,
|
|
cu_seqlens_k,
|
|
max_seqlen_q,
|
|
max_seqlen_k,
|
|
causal=True,
|
|
alibi_slopes=repeat(alibi_slopes, "nh -> b nh", b=b)
|
|
)
|
|
flash_out = output_pad_fn(flash_out_unpad)
|
|
flash_out.backward(dout)
|
|
flash_dq_unpad, q_unpad.grad = q_unpad.grad.clone(), None
|
|
flash_dk_unpad, k_unpad.grad = k_unpad.grad.clone(), None
|
|
flash_dv_unpad, v_unpad.grad = v_unpad.grad.clone(), None
|
|
flash_dq = dq_pad_fn(flash_dq_unpad)
|
|
flash_dk = dk_pad_fn(flash_dk_unpad)
|
|
flash_dv = dk_pad_fn(flash_dv_unpad)
|
|
|
|
assert torch.allclose(flash_out, triton_out, atol=1e-2, rtol=0.)
|
|
assert torch.allclose(flash_dq, triton_dq, atol=1e-2, rtol=0.)
|
|
assert torch.allclose(flash_dk, triton_dk, atol=1e-2, rtol=0.)
|
|
assert torch.allclose(flash_dv, triton_dv, atol=1e-2, rtol=0.)
|
|
|
|
|
|
@pytest.mark.parametrize("alibi", [True])
|
|
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
|
|
# @pytest.mark.parametrize("dtype", [torch.float16])
|
|
@pytest.mark.parametrize("num_splits", [1, 0])
|
|
# @pytest.mark.parametrize("num_splits", [0])
|
|
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
|
|
# @pytest.mark.parametrize("mha_type", ["mha"])
|
|
@pytest.mark.parametrize("new_kv", [False, True])
|
|
# @pytest.mark.parametrize("new_kv", [True])
|
|
# @pytest.mark.parametrize("local", [False, True])
|
|
@pytest.mark.parametrize("local", [False])
|
|
# @pytest.mark.parametrize("causal", [False, True])
|
|
@pytest.mark.parametrize("causal", [True])
|
|
@pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True, False])
|
|
# @pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True])
|
|
@pytest.mark.parametrize("rotary_interleaved", [False, True])
|
|
# @pytest.mark.parametrize("rotary_interleaved", [False])
|
|
@pytest.mark.parametrize("rotary_fraction", [0.0, 0.5, 1.0])
|
|
# @pytest.mark.parametrize("rotary_fraction", [0.0])
|
|
@pytest.mark.parametrize("has_batch_idx", [False, True])
|
|
# @pytest.mark.parametrize("has_batch_idx", [True])
|
|
@pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 128, 160, 192, 224, 256])
|
|
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
|
|
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
|
|
# @pytest.mark.parametrize('d', [56, 80])
|
|
# @pytest.mark.parametrize("d", [128])
|
|
@pytest.mark.parametrize(
|
|
"seqlen_q,seqlen_k",
|
|
[
|
|
(1, 128),
|
|
(1, 339),
|
|
(3, 1024),
|
|
(64, 800),
|
|
(64, 256),
|
|
(3, 799),
|
|
(64, 2048),
|
|
(16, 20000),
|
|
(1, 128 * 1024),
|
|
(16, 128 * 1024),
|
|
(128, 128),
|
|
],
|
|
)
|
|
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
|
|
def test_flash_attn_kvcache(
|
|
seqlen_q,
|
|
seqlen_k,
|
|
d,
|
|
has_batch_idx,
|
|
rotary_fraction,
|
|
rotary_interleaved,
|
|
seqlen_new_eq_seqlen_q,
|
|
causal,
|
|
local,
|
|
new_kv,
|
|
mha_type,
|
|
num_splits,
|
|
dtype,
|
|
alibi,
|
|
):
|
|
if seqlen_q > seqlen_k and new_kv:
|
|
pytest.skip()
|
|
if not new_kv and rotary_fraction > 0.0:
|
|
pytest.skip()
|
|
device = "cuda"
|
|
# set seed
|
|
torch.random.manual_seed(0)
|
|
batch_size = 2
|
|
batch_size_cache = batch_size if not has_batch_idx else batch_size * 2
|
|
nheads = 8
|
|
# rotary_dim must be a multiple of 16, and must be <= d
|
|
rotary_dim = math.floor(int(rotary_fraction * d) / 16) * 16
|
|
nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 4)
|
|
assert nheads % nheads_k == 0
|
|
window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
|
|
q = torch.randn(batch_size, seqlen_q, nheads,
|
|
d, device=device, dtype=dtype)
|
|
seqlen_new = seqlen_q if seqlen_new_eq_seqlen_q else torch.randint(
|
|
1, seqlen_q + 1, (1,)).item()
|
|
if new_kv:
|
|
k = torch.randn(batch_size, seqlen_new, nheads_k,
|
|
d, device=device, dtype=dtype)
|
|
v = torch.randn(batch_size, seqlen_new, nheads_k,
|
|
d, device=device, dtype=dtype)
|
|
else:
|
|
k, v = None, None
|
|
k_cache = torch.randn(batch_size_cache, seqlen_k,
|
|
nheads_k, d, device=device, dtype=dtype)
|
|
v_cache = torch.randn(batch_size_cache, seqlen_k,
|
|
nheads_k, d, device=device, dtype=dtype)
|
|
cache_seqlens = torch.randint(
|
|
0,
|
|
# If we don't use seqlen_q in the case of causal and rotary, cos/sin won't be long enough
|
|
(seqlen_k - (seqlen_q if (causal or local)
|
|
and rotary_dim > 1 else seqlen_new) + 1)
|
|
if new_kv
|
|
else (seqlen_k + 1),
|
|
(batch_size,),
|
|
dtype=torch.int32,
|
|
device=device,
|
|
)
|
|
if has_batch_idx:
|
|
cache_batch_idx = torch.randperm(
|
|
batch_size_cache, dtype=torch.int32, device=device)[:batch_size]
|
|
else:
|
|
cache_batch_idx = None
|
|
# cache_seqlens = torch.tensor([64], dtype=torch.int32, device=device)
|
|
if rotary_dim > 0:
|
|
angle = torch.rand(seqlen_k, rotary_dim // 2,
|
|
device=device) * 2 * math.pi
|
|
cos = torch.cos(angle).to(dtype=dtype)
|
|
sin = torch.sin(angle).to(dtype=dtype)
|
|
if causal or local:
|
|
q_ro = apply_rotary_emb(
|
|
q, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved
|
|
)
|
|
else:
|
|
q_ro = rearrange(
|
|
apply_rotary_emb(
|
|
rearrange(q, "b s h d -> b 1 (s h) d"),
|
|
cos,
|
|
sin,
|
|
seqlen_offsets=cache_seqlens,
|
|
interleaved=rotary_interleaved,
|
|
),
|
|
"b 1 (s h) d -> b s h d",
|
|
s=seqlen_q,
|
|
)
|
|
# q_ro = q
|
|
k_ro = apply_rotary_emb(
|
|
k, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved
|
|
)
|
|
else:
|
|
cos, sin = None, None
|
|
q_ro, k_ro = q, k
|
|
# k_cache[:, 64:] = -1
|
|
k_cache_ref = (
|
|
k_cache if not has_batch_idx else k_cache[cache_batch_idx]).clone()
|
|
v_cache_ref = (
|
|
v_cache if not has_batch_idx else v_cache[cache_batch_idx]).clone()
|
|
arange = rearrange(torch.arange(seqlen_k, device=device), "s -> 1 s")
|
|
cache_seqlens_expanded = rearrange(cache_seqlens, "b -> b 1")
|
|
if new_kv:
|
|
update_mask = torch.logical_and(
|
|
cache_seqlens_expanded <= arange, arange < cache_seqlens_expanded + seqlen_new
|
|
)
|
|
k_cache_ref[update_mask] = rearrange(k_ro, "b s ... -> (b s) ...")
|
|
v_cache_ref[update_mask] = rearrange(v, "b s ... -> (b s) ...")
|
|
k_cache_rep = repeat(
|
|
k_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
|
|
v_cache_rep = repeat(
|
|
v_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
|
|
if alibi:
|
|
seqlen_alibi = k_cache_rep.shape[1]
|
|
alibi_tensor, alibi_slopes = generate_alibi(
|
|
max_seq_len=seqlen_alibi,
|
|
num_attention_heads=nheads,
|
|
tp_world_size=1,
|
|
tp_index=0,
|
|
key_padding_mask=None,
|
|
device="cuda"
|
|
)
|
|
# alibi_tensor = alibi_tensor.expand(batch_size, -1, seqlen_q, -1)
|
|
alibi_slopes = repeat(alibi_slopes, "nh -> b nh", b=batch_size)
|
|
if alibi_tensor.abs().max().item() >= torch.finfo(dtype).max:
|
|
pytest.skip()
|
|
else:
|
|
alibi_tensor, alibi_slopes = None, None
|
|
out = flash_attn_with_kvcache(
|
|
q,
|
|
k_cache,
|
|
v_cache,
|
|
k,
|
|
v,
|
|
cos,
|
|
sin,
|
|
cache_seqlens,
|
|
cache_batch_idx,
|
|
causal=causal,
|
|
window_size=window_size,
|
|
rotary_interleaved=rotary_interleaved,
|
|
num_splits=num_splits,
|
|
alibi_slopes=alibi_slopes
|
|
)
|
|
# out = flash_attn_with_kvcache(
|
|
# q, k_cache, v_cache, cache_seqlens=cache_seqlens, causal=causal, window_size=window_size
|
|
# )
|
|
# out = flash_attn_with_kvcache(q, k_cache, v_cache, causal=causal, window_size=window_size)
|
|
# qk = torch.einsum("bqhd,bkhd->bhqk", q, k_cache_ref)
|
|
# m = qk.amax(-1, keepdim=True)
|
|
# s_tmp = torch.exp((qk - m) / math.sqrt(d))
|
|
# o1 = torch.einsum('bhst,bthd->bshd', s_tmp, v_cache_ref)
|
|
# lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
|
|
# probs = torch.softmax(qk, dim=-1)
|
|
key_padding_mask = arange < cache_seqlens_expanded + \
|
|
(seqlen_new if new_kv else 0)
|
|
out_ref, _ = attention_ref(
|
|
q_ro,
|
|
k_cache_rep,
|
|
v_cache_rep,
|
|
None,
|
|
key_padding_mask,
|
|
0.0,
|
|
None,
|
|
causal=causal,
|
|
window_size=window_size,
|
|
bias=alibi_tensor
|
|
)
|
|
out_pt, _ = attention_ref(
|
|
q_ro,
|
|
k_cache_rep,
|
|
v_cache_rep,
|
|
None,
|
|
key_padding_mask,
|
|
0.0,
|
|
None,
|
|
causal=causal,
|
|
window_size=window_size,
|
|
upcast=False,
|
|
reorder_ops=True,
|
|
bias=alibi_tensor
|
|
)
|
|
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
|
|
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
|
|
print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
|
|
print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
|
|
|
|
# Check that FlashAttention's numerical error is at most twice the numerical error
|
|
# of a Pytorch implementation.
|
|
if new_kv:
|
|
k_cache_select = k_cache if not has_batch_idx else k_cache[cache_batch_idx]
|
|
v_cache_select = v_cache if not has_batch_idx else v_cache[cache_batch_idx]
|
|
assert torch.allclose(k_cache_select, k_cache_ref,
|
|
rtol=1e-3, atol=1e-3)
|
|
assert torch.equal(v_cache_select, v_cache_ref)
|
|
assert (out - out_ref).abs().max().item() <= 3 * \
|
|
(out_pt - out_ref).abs().max().item() + 1e-5
|