61 lines
2.7 KiB
Python
61 lines
2.7 KiB
Python
# Run test with:
|
|
# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/losses/test_cross_entropy_parallel.py
|
|
|
|
import math
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import pytest
|
|
|
|
from apex.transformer import parallel_state
|
|
from apex.transformer import tensor_parallel
|
|
|
|
from flash_attn.losses.cross_entropy import CrossEntropyLoss
|
|
|
|
is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8
|
|
|
|
|
|
@pytest.mark.parametrize('dtype', [torch.float16, torch.float32] + ([torch.bfloat16] if is_sm8x else []))
|
|
# @pytest.mark.parametrize('dtype', [torch.float16])
|
|
@pytest.mark.parametrize('inplace_backward', [False, True])
|
|
# @pytest.mark.parametrize('inplace_backward', [False])
|
|
@pytest.mark.parametrize('smoothing', [0.0, 0.9])
|
|
# @pytest.mark.parametrize('smoothing', [0.9])
|
|
@pytest.mark.parametrize('vocab_size', [50264])
|
|
@pytest.mark.parametrize('world_size', [1, 2, 4, 8])
|
|
# @pytest.mark.parametrize('world_size', [2])
|
|
def test_cross_entropy_loss_parallel(vocab_size, world_size, smoothing, inplace_backward, dtype):
|
|
assert vocab_size % world_size == 0
|
|
rtol, atol = ((1e-5, 1e-6) if dtype == torch.float32
|
|
else ((1e-3, 1e-4) if dtype == torch.float16 else (1e-2, 3e-3)))
|
|
if not torch.distributed.is_initialized():
|
|
torch.distributed.init_process_group(backend='nccl', init_method='env://')
|
|
partition_vocab_size = vocab_size // world_size
|
|
device = f'cuda:{torch.distributed.get_rank()}'
|
|
assert world_size <= torch.distributed.get_world_size()
|
|
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
|
|
rank = parallel_state.get_tensor_model_parallel_rank()
|
|
# set seed
|
|
torch.random.manual_seed(0)
|
|
batch_size = 8
|
|
seqlen = 128
|
|
x_pt = (torch.randn(batch_size * seqlen, vocab_size, device=device,
|
|
dtype=dtype) * 10).requires_grad_()
|
|
x = tensor_parallel.scatter_to_tensor_model_parallel_region(x_pt).detach().clone().requires_grad_()
|
|
y = torch.randint(0, vocab_size, (batch_size * seqlen,), dtype=torch.long, device=device)
|
|
y[torch.randperm(batch_size * seqlen)[:10]] = -100
|
|
model_pt = torch.nn.CrossEntropyLoss(label_smoothing=smoothing, reduction='none')
|
|
model = CrossEntropyLoss(label_smoothing=smoothing, reduction='none',
|
|
inplace_backward=inplace_backward,
|
|
process_group=parallel_state.get_tensor_model_parallel_group())
|
|
out = model(x, y)
|
|
out_pt = model_pt(x_pt.float(), y)
|
|
assert torch.allclose(out, out_pt, rtol=1e-5, atol=1e-6)
|
|
|
|
g = torch.randn_like(out)
|
|
out_pt.backward(g)
|
|
out.backward(g)
|
|
assert torch.allclose(x.grad, x_pt.grad[:, (rank * partition_vocab_size):(rank + 1) * partition_vocab_size], rtol=rtol, atol=atol)
|
|
|
|
parallel_state.destroy_model_parallel()
|