flash-attention/hopper/epilogue_fwd_sm90_tma.hpp

297 lines
14 KiB
C++

/******************************************************************************
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
******************************************************************************/
#pragma once
#include <cutlass/cutlass.h>
#include "cute/tensor.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "named_barrier.hpp"
#include "utils.h"
namespace flash {
using namespace cute;
// template <int kHeadDim_, int kBlockM_, int kBlockN_, int kNWarps_, typename Element_>
template <typename Ktraits, typename Seqlen_traits>
struct CollectiveEpilogueFwd {
using Element = typename Ktraits::OutputType;
static constexpr int kBlockM = Ktraits::kBlockM;
static constexpr int kBlockN = Ktraits::kBlockN;
static constexpr int kHeadDim = Ktraits::kHeadDim;
using TileShape_MNK = Shape<Int<kBlockM>, Int<kBlockN>, Int<kHeadDim>>;
static constexpr int kNWarps = Ktraits::kNWarps;
static constexpr int kNThreads = kNWarps * cutlass::NumThreadsPerWarp;
static constexpr bool Is_WS = kNWarps >= 12;
static constexpr int NumCopyThreads = !Is_WS ? 0 : cutlass::NumThreadsPerWarpGroup;
static constexpr int NumMmaThreads = kNThreads - NumCopyThreads;
using SmemLayoutAtomO = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
decltype(cute::get<0>(TileShape_MNK{})), decltype(cute::get<2>(TileShape_MNK{}))>());
using SmemLayoutO = decltype(tile_to_shape(SmemLayoutAtomO{}, select<0, 2>(TileShape_MNK{})));
using SmemCopyAtomO = Copy_Atom<cute::SM90_U32x4_STSM_N, Element>;
using SharedStorage = cute::array_aligned<Element, cute::cosize_v<SmemLayoutO>>;
using GmemTiledCopyOTMA = cute::SM90_TMA_STORE;
using TMA_O = decltype(make_tma_copy(
GmemTiledCopyOTMA{},
make_tensor(
make_gmem_ptr(static_cast<Element*>(nullptr)),
typename Seqlen_traits::ShapeT{},
typename Seqlen_traits::StrideT{}
),
SmemLayoutO{},
select<0, 2>(TileShape_MNK{}),
_1{})); // no mcast for O
// These are for storing the output tensor without TMA (e.g., for setting output to zero and var-seq-len)
static constexpr int kNumVecElem = ceil_div(128, sizeof_bits_v<Element>);
static_assert(kHeadDim % kNumVecElem == 0);
static constexpr int kNumThreadsPerRow = kHeadDim / kNumVecElem;
static_assert(NumMmaThreads % kNumThreadsPerRow == 0);
static constexpr int kNumRows = NumMmaThreads / kNumThreadsPerRow;
using TiledCopyOAtom = cute::Copy_Atom<cute::UniversalCopy<cutlass::uint128_t>, Element>;
using TiledCopyOThrLayout = decltype(cute::make_layout(
cute::make_shape(Int<kNumRows>{}, Int<kNumThreadsPerRow>{}),
LayoutRight{}));
using TiledCopyOValLayout = decltype(cute::make_layout(
cute::make_shape(_1{}, Int<kNumVecElem>{}),
LayoutRight{}));
using TiledCopyO = decltype(make_tiled_copy(
TiledCopyOAtom{},
TiledCopyOThrLayout{}, // Thr layout
TiledCopyOValLayout{} // Val layout
));
// used for rmem -> smem O copy in fp8 kernel to undo column permutation
using ThreadLayoutrO = Layout<Shape<_8, Int<kBlockM/16>, _4, _1>,
Stride<_4, _32, _1, _0>>;
using ValueLayoutrO = Layout<Shape<_1, _2, Shape<_2, _2>, Int<kHeadDim/16>>,
Stride<_0, _2, Stride<_4, _1>, _8>>;
using TiledCopyrO = decltype(make_tiled_copy(Copy_Atom<UniversalCopy<uint16_t>, Element>{},
ThreadLayoutrO{}, ValueLayoutrO{}));
using TiledCopyShaperO = Shape<_8, Int<kBlockM/8>, _16, Int<kHeadDim/16>>;
using SmemLayoutrO = decltype(composition(SmemLayoutO{}, Layout<TiledCopyShaperO>{}));
// Host side kernel arguments
struct Arguments {
Element* ptr_O;
typename Seqlen_traits::LayoutT const layout_O;
float* ptr_LSE;
typename Seqlen_traits::LayoutLseT const layout_LSE;
};
// Device side kernel params
struct Params {
Element* ptr_O;
typename Seqlen_traits::LayoutT const layout_O;
float* ptr_LSE;
typename Seqlen_traits::LayoutLseT const layout_LSE;
TMA_O tma_store_O;
};
static Params
to_underlying_arguments(Arguments const& args) {
Tensor mO = make_tensor(make_gmem_ptr(args.ptr_O), args.layout_O);
TMA_O tma_store_O = make_tma_copy(
GmemTiledCopyOTMA{},
mO,
SmemLayoutO{},
select<0, 2>(TileShape_MNK{}),
_1{}); // no mcast for O
return {args.ptr_O, args.layout_O, args.ptr_LSE, args.layout_LSE, tma_store_O};
}
/// Issue Tma Descriptor Prefetch -- ideally from a single thread for best performance
CUTLASS_DEVICE
static void prefetch_tma_descriptors(Params const& epilogue_params) {
if constexpr (!Seqlen_traits::kUseVarSeqLen) {
cute::prefetch_tma_descriptor(epilogue_params.tma_store_O.get_tma_descriptor());
}
}
template <typename SharedStorage, typename FrgTensorO, typename FrgTensorLSE, typename TiledMma>
CUTLASS_DEVICE void
store(Params const& epilogue_params,
FrgTensorO const& tOrO,
FrgTensorLSE const& lse,
SharedStorage& shared_storage,
TiledMma tiled_mma,
int thread_idx,
cute::tuple<int32_t, int32_t, int32_t> const& block_coord,
const Seqlen_traits& seqlen_traits_q
) {
auto [m_block, bidh, bidb] = block_coord;
Tensor sO = make_tensor(make_smem_ptr(shared_storage.smem_o.data()), SmemLayoutO{});
auto smem_tiled_copy_O = make_tiled_copy_C(SmemCopyAtomO{}, tiled_mma);
auto smem_thr_copy_O = smem_tiled_copy_O.get_thread_slice(thread_idx);
Tensor tOrO_out = flash::convert_type<Element>(tOrO);
Tensor taccOrO = smem_thr_copy_O.retile_S(tOrO_out); // ((Atom,AtomNum), MMA_M, MMA_N)
Tensor taccOsO = smem_thr_copy_O.partition_D(sO); // ((Atom,AtomNum),PIPE_M,PIPE_N)
// Make sure all WGs have finished reading V
cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast<int>(FwdNamedBarriers::ValueEmpty) /*id*/);
cute::copy(smem_tiled_copy_O, taccOrO, taccOsO);
cutlass::arch::fence_view_async_shared(); // ensure smem writes are visible to TMA
cutlass::arch::NamedBarrier::arrive(NumMmaThreads + cutlass::NumThreadsPerWarp,
cutlass::arch::ReservedNamedBarriers::EpilogueBarrier);
Tensor mLSE = make_tensor(make_gmem_ptr(epilogue_params.ptr_LSE), epilogue_params.layout_LSE);
Tensor gLSE = seqlen_traits_q.get_lse_local_tile_tensor(
mLSE, Shape<Int<kBlockM>>{}, bidh, bidb)(_, m_block);
Tensor caccO = cute::make_identity_tensor(select<0, 2>(TileShape_MNK{}));
auto thread_mma = tiled_mma.get_thread_slice(thread_idx);
Tensor taccOcO = thread_mma.partition_C(caccO); // (MMA,MMA_M,MMA_K)
static_assert(decltype(size<0, 0>(taccOcO))::value == 2);
static_assert(decltype(size<0, 1>(taccOcO))::value == 2);
// taccOcO has shape ((2, 2, V), MMA_M, MMA_K), we only take only the row indices.
Tensor taccOcO_row = taccOcO(make_coord(_0{}, _, _0{}), _, _0{});
CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row)); // MMA_M
if (get<1>(taccOcO_row(_0{})) == 0) {
#pragma unroll
for (int mi = 0; mi < size(lse); ++mi) {
const int row = get<0>(taccOcO_row(mi));
if (row < seqlen_traits_q.actual_seq_len - m_block * kBlockM) { gLSE(row) = lse(mi); }
}
}
int write_warp_idx = kNWarps - 1;
if (cutlass::canonical_warp_idx_sync() == write_warp_idx) {
cutlass::arch::NamedBarrier::sync(
NumMmaThreads + cutlass::NumThreadsPerWarp,
cutlass::arch::ReservedNamedBarriers::EpilogueBarrier
);
}
TiledCopyO gmem_tiled_copy_O;
flash::write_O<!Seqlen_traits::kUseVarSeqLen, NumCopyThreads>(
epilogue_params.ptr_O, epilogue_params.tma_store_O, gmem_tiled_copy_O,
epilogue_params.layout_O, select<0, 2>(TileShape_MNK{}), sO,
m_block, bidh, bidb, seqlen_traits_q, write_warp_idx
);
}
template <typename SharedStorage, typename FrgTensorO, typename FrgTensorLSE, typename TiledMma>
CUTLASS_DEVICE void
store_fp8(Params const& epilogue_params,
FrgTensorO const& tOrO,
FrgTensorLSE const& lse,
SharedStorage& shared_storage,
TiledMma tiled_mma,
int thread_idx,
cute::tuple<int32_t, int32_t, int32_t> const& block_coord,
const Seqlen_traits& seqlen_traits_q
) {
// using SmemLayoutrO = typename Ktraits::SmemLayoutrO;
// using TiledCopyrO = typename Ktraits::TiledCopyrO;
auto [m_block, bidh, bidb] = block_coord;
TiledCopyrO rmem_tiled_copy_O;
Tensor sOacc = make_tensor(make_smem_ptr(shared_storage.smem_o.data()), SmemLayoutrO{});
auto rmem_thr_copy_O = rmem_tiled_copy_O.get_thread_slice(thread_idx);
Tensor taccOsO = rmem_thr_copy_O.partition_D(sOacc);
Tensor tOrO_out = flash::convert_type<Element>(tOrO); // Element is Ktraits::OutputType
Tensor taccOrO = make_tensor(tOrO_out.data(), shape(taccOsO));
// Make sure all WGs have finished reading V
cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast<int>(FwdNamedBarriers::ValueEmpty) /*id*/);
cute::copy(rmem_tiled_copy_O, taccOrO, taccOsO);
cutlass::arch::fence_view_async_shared(); // ensure smem writes are visible to TMA
cutlass::arch::NamedBarrier::arrive(NumMmaThreads + cutlass::NumThreadsPerWarp,
cutlass::arch::ReservedNamedBarriers::EpilogueBarrier);
Tensor mLSE = make_tensor(make_gmem_ptr(epilogue_params.ptr_LSE), epilogue_params.layout_LSE);
Tensor gLSE = seqlen_traits_q.get_lse_local_tile_tensor(
mLSE, Shape<Int<kBlockM>>{}, bidh, bidb)(_, m_block);
Tensor caccO = cute::make_identity_tensor(select<0, 2>(TileShape_MNK{}));
auto thread_mma = tiled_mma.get_thread_slice(thread_idx);
Tensor taccOcO = thread_mma.partition_C(caccO); // (MMA,MMA_M,MMA_K)
static_assert(decltype(size<0, 0>(taccOcO))::value == 2);
static_assert(decltype(size<0, 1>(taccOcO))::value == 2);
// taccOcO has shape ((2, 2, V), MMA_M, MMA_K), we only take only the row indices.
Tensor taccOcO_row = taccOcO(make_coord(_0{}, _, _0{}), _, _0{});
CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row)); // MMA_M
int const seqlen_q = [&] {
if constexpr(Seqlen_traits::kUseVarSeqLen) { return seqlen_traits_q.actual_seq_len; }
else { return shape<2>(epilogue_params.layout_LSE); }
}();
if (get<1>(taccOcO_row(_0{})) == 0) {
#pragma unroll
for (int mi = 0; mi < size(lse); ++mi) {
const int row = get<0>(taccOcO_row(mi));
if (row < seqlen_q - m_block * kBlockM) { gLSE(row) = lse(mi); }
}
}
int write_warp_idx = kNWarps - 1;
if (cutlass::canonical_warp_idx_sync() == write_warp_idx) {
cutlass::arch::NamedBarrier::sync(NumMmaThreads + cutlass::NumThreadsPerWarp,
cutlass::arch::ReservedNamedBarriers::EpilogueBarrier);
}
TiledCopyO gmem_tiled_copy_O;
Tensor sO = make_tensor(make_smem_ptr(shared_storage.smem_o.data()), SmemLayoutO{});
flash::write_O<!Seqlen_traits::kUseVarSeqLen, NumCopyThreads>(
epilogue_params.ptr_O, epilogue_params.tma_store_O, gmem_tiled_copy_O,
epilogue_params.layout_O, select<0, 2>(TileShape_MNK{}), sO,
m_block, bidh, bidb, seqlen_traits_q, write_warp_idx
);
}
CUTLASS_DEVICE void
store_tail() {
tma_store_wait<0>();
}
// Write 0 to output and -inf to LSE
template<typename SharedStorage>
CUTLASS_DEVICE void
store_zero(
Params const& epilogue_params,
SharedStorage& shared_storage,
int thread_idx,
cute::tuple<int32_t, int32_t, int32_t> const& block_coord,
const Seqlen_traits& seqlen_traits_q
) {
auto [m_block, bidh, bidb] = block_coord;
Tensor mO = make_tensor(make_gmem_ptr(epilogue_params.ptr_O), epilogue_params.layout_O);
Tensor gO = seqlen_traits_q.get_local_tile_tensor(
mO, select<0, 2>(TileShape_MNK{}), bidh, bidb
)(_, _, m_block); // (M, K)
Tensor mLSE = make_tensor(make_gmem_ptr(epilogue_params.ptr_LSE), epilogue_params.layout_LSE);
Tensor gLSE = seqlen_traits_q.get_lse_local_tile_tensor(
mLSE, Shape<Int<kBlockM>>{}, bidh, bidb)(_, m_block);
TiledCopyO gmem_tiled_copy_O;
auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(thread_idx);
Tensor tOgO = gmem_thr_copy_O.partition_D(gO);
Tensor tOrO = make_fragment_like(tOgO);
clear(tOrO);
// Construct identity layout for sO
Tensor cO = cute::make_identity_tensor(select<0, 2>(TileShape_MNK{})); // (BLK_M,BLK_K) -> (blk_m,blk_k)
// Repeat the partitioning with identity layouts
Tensor tOcO = gmem_thr_copy_O.partition_D(cO);
Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgO)));
#pragma unroll
for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(_0{}, _0{}, k)) < get<1>(epilogue_params.layout_O.shape()); }
// Clear_OOB_K must be false since we don't want to write zeros to gmem
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, seqlen_traits_q.actual_seq_len - m_block * kBlockM
);
static_assert(kBlockM <= NumMmaThreads);
if (thread_idx < seqlen_traits_q.actual_seq_len - m_block * kBlockM) { gLSE(thread_idx) = -INFINITY; }
}
};
} // namespace flash