flash-attention/hopper/flash_api.cpp

982 lines
43 KiB
C++

/******************************************************************************
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
******************************************************************************/
// Include these 2 headers instead of torch/extension.h since we don't need all of the torch headers.
#include <torch/python.h>
#include <torch/nn/functional.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cutlass/numeric_types.h>
#include "flash.h"
#include "static_switch.h"
#define CHECK_DEVICE(x) TORCH_CHECK(x.is_cuda(), #x " must be on CUDA")
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
void set_params_fprop(Flash_fwd_params &params,
// sizes
const size_t b,
const size_t seqlen_q,
const size_t seqlen_k,
const size_t seqlen_q_rounded,
const size_t seqlen_k_rounded,
const size_t h,
const size_t h_k,
const size_t d,
const size_t d_rounded,
// device pointers
const at::Tensor q,
const at::Tensor k,
const at::Tensor v,
at::Tensor out,
void *cu_seqlens_q_d,
void *cu_seqlens_k_d,
void *seqused_k,
void *p_d,
void *softmax_lse_d,
float p_dropout,
float softmax_scale,
int window_size_left,
int window_size_right,
bool seqlenq_ngroups_swapped=false,
bool unpadded_lse=false) {
// Reset the parameters
params = {};
params.is_bf16 = q.dtype() == torch::kBFloat16;
params.is_e4m3 = q.dtype() == torch::kFloat8_e4m3fn;
// Set the pointers and strides.
params.q_ptr = q.data_ptr();
params.k_ptr = k.data_ptr();
params.v_ptr = v.data_ptr();
// All stride are in elements, not bytes.
params.q_row_stride = q.stride(-3);
params.k_row_stride = k.stride(-3);
params.v_row_stride = v.stride(-3);
params.q_head_stride = q.stride(-2);
params.k_head_stride = k.stride(-2);
params.v_head_stride = v.stride(-2);
params.o_ptr = out.data_ptr();
params.o_row_stride = out.stride(-3);
params.o_head_stride = out.stride(-2);
if (cu_seqlens_q_d == nullptr) {
params.q_batch_stride = q.stride(0);
params.k_batch_stride = k.stride(0);
params.v_batch_stride = v.stride(0);
params.o_batch_stride = out.stride(0);
if (seqlenq_ngroups_swapped) {
params.q_batch_stride *= seqlen_q;
params.o_batch_stride *= seqlen_q;
}
}
params.cu_seqlens_q = static_cast<int *>(cu_seqlens_q_d);
params.cu_seqlens_k = static_cast<int *>(cu_seqlens_k_d);
params.seqused_k = static_cast<int *>(seqused_k);
TORCH_CHECK(
bool(params.cu_seqlens_q) == bool(params.cu_seqlens_k),
"cu_seqlens_q and cu_seqlens_k must be both null or non-null"
);
// P = softmax(QK^T)
params.p_ptr = p_d;
// Softmax sum
params.softmax_lse_ptr = softmax_lse_d;
// Set the dimensions.
params.b = b;
params.h = h;
params.h_k = h_k;
params.h_h_k_ratio = h / h_k;
params.seqlen_q = seqlen_q;
params.seqlen_k = seqlen_k;
params.seqlen_q_rounded = seqlen_q_rounded;
params.seqlen_k_rounded = seqlen_k_rounded;
params.d = d;
params.d_rounded = d_rounded;
// Set the different scale values.
params.scale_softmax = softmax_scale;
params.scale_softmax_log2 = softmax_scale * M_LOG2E;
__half scale_softmax_log2_half = __float2half(params.scale_softmax_log2);
__half2 scale_softmax_log2_half2 = __half2(scale_softmax_log2_half, scale_softmax_log2_half);
params.scale_softmax_log2_half2 = reinterpret_cast<uint32_t&>(scale_softmax_log2_half2);
// Set this to probability of keeping an element to simplify things.
params.p_dropout = 1.f - p_dropout;
// Convert p from float to int so we don't have to convert the random uint to float to compare.
// [Minor] We want to round down since when we do the comparison we use <= instead of <
// params.p_dropout_in_uint = uint32_t(std::floor(params.p_dropout * 4294967295.0));
// params.p_dropout_in_uint16_t = uint16_t(std::floor(params.p_dropout * 65535.0));
params.p_dropout_in_uint8_t = uint8_t(std::floor(params.p_dropout * 255.0));
params.rp_dropout = 1.f / params.p_dropout;
params.scale_softmax_rp_dropout = params.rp_dropout * params.scale_softmax;
TORCH_CHECK(p_dropout < 1.f);
#ifdef FLASHATTENTION_DISABLE_DROPOUT
TORCH_CHECK(p_dropout == 0.0f, "This flash attention build does not support dropout.");
#endif
// Causal is the special case where window_size_right == 0 and window_size_left < 0.
// Local is the more general case where window_size_right >= 0 or window_size_left >= 0.
params.is_causal = window_size_left < 0 && window_size_right == 0;
if (window_size_left < 0 && window_size_right >= 0) { window_size_left = seqlen_k; }
if (window_size_left >= 0 && window_size_right < 0) { window_size_right = seqlen_k; }
params.window_size_left = window_size_left;
params.window_size_right = window_size_right;
#ifdef FLASHATTENTION_DISABLE_LOCAL
TORCH_CHECK(params.is_causal || (window_size_left < 0 && window_size_right < 0),
"This flash attention build does not support local attention.");
#endif
params.is_seqlens_k_cumulative = true;
#ifdef FLASHATTENTION_DISABLE_UNEVEN_K
TORCH_CHECK(d == d_rounded, "This flash attention build does not support headdim not being a multiple of 32.");
#endif
params.unpadded_lse = unpadded_lse;
}
void set_params_dgrad(Flash_bwd_params &params,
// sizes
const size_t b,
const size_t seqlen_q,
const size_t seqlen_k,
const size_t seqlen_q_rounded,
const size_t seqlen_k_rounded,
const size_t h,
const size_t h_k,
const size_t d,
const size_t d_rounded,
// device pointers
const at::Tensor q,
const at::Tensor k,
const at::Tensor v,
const at::Tensor out,
const at::Tensor dout,
at::Tensor dq,
at::Tensor dk,
at::Tensor dv,
void *cu_seqlens_q_d,
void *cu_seqlens_k_d,
void *dq_accum_d,
void *dk_accum_d,
void *dv_accum_d,
void *softmax_lse_d,
void *dsoftmax_sum_d,
float p_dropout,
float softmax_scale,
int window_size_left,
int window_size_right,
bool deterministic) {
set_params_fprop(params,
b, seqlen_q, seqlen_k, seqlen_q_rounded, seqlen_k_rounded, h, h_k, d, d_rounded,
q, k, v, out,
cu_seqlens_q_d,
cu_seqlens_k_d,
nullptr,
nullptr,
softmax_lse_d,
p_dropout,
softmax_scale,
window_size_left,
window_size_right);
// Set the pointers and strides.
params.do_ptr = dout.data_ptr();
params.do_row_stride = dout.stride(-3);
params.do_head_stride = dout.stride(-2);
params.dq_ptr = dq.data_ptr();
params.dk_ptr = dk.data_ptr();
params.dv_ptr = dv.data_ptr();
params.dq_row_stride = dq.stride(-3);
params.dk_row_stride = dk.stride(-3);
params.dv_row_stride = dv.stride(-3);
params.dq_head_stride = dq.stride(-2);
params.dk_head_stride = dk.stride(-2);
params.dv_head_stride = dv.stride(-2);
if (cu_seqlens_q_d == nullptr) {
params.do_batch_stride = dout.stride(0);
params.dq_batch_stride = dq.stride(0);
params.dk_batch_stride = dk.stride(0);
params.dv_batch_stride = dv.stride(0);
}
params.dq_accum_ptr = dq_accum_d;
params.dk_accum_ptr = dk_accum_d;
params.dv_accum_ptr = dv_accum_d;
// Softmax sum
params.dsoftmax_sum = dsoftmax_sum_d;
params.deterministic = deterministic;
}
void run_mha_fwd(Flash_fwd_params &params, cudaStream_t stream, bool force_split_kernel=false) {
// HEADDIM_SWITCH(params.d, [&] {
// run_mha_fwd_<cutlass::half_t, kHeadSize>(params, stream);
// });
if (!params.is_e4m3) {
if (params.is_bf16) {
if (params.d == 64) {
run_mha_fwd_<cutlass::bfloat16_t, 64>(params, stream);
} else if (params.d == 128) {
run_mha_fwd_<cutlass::bfloat16_t, 128>(params, stream);
} else {
run_mha_fwd_<cutlass::bfloat16_t, 256>(params, stream);
}
} else {
if (params.d == 64) {
run_mha_fwd_<cutlass::half_t, 64>(params, stream);
} else if (params.d == 128) {
run_mha_fwd_<cutlass::half_t, 128>(params, stream);
} else {
run_mha_fwd_<cutlass::half_t, 256>(params, stream);
}
}
} else {
if (params.d == 64) {
run_mha_fwd_<cutlass::float_e4m3_t, 64>(params, stream);
} else if (params.d == 128) {
run_mha_fwd_<cutlass::float_e4m3_t, 128>(params, stream);
} else if (params.d == 256) {
run_mha_fwd_<cutlass::float_e4m3_t, 256>(params, stream);
}
}
}
std::vector<at::Tensor>
mha_fwd(at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
const at::Tensor &k, // batch_size x seqlen_k x num_heads_k x head_size
const at::Tensor &v, // batch_size x seqlen_k x num_heads_k x head_size
c10::optional<at::Tensor> &out_, // batch_size x seqlen_q x num_heads x head_size
const float softmax_scale,
c10::optional<at::Tensor> &descale_q_, // 1
c10::optional<at::Tensor> &descale_k_, // 1
c10::optional<at::Tensor> &descale_v_, // 1
bool is_causal) {
auto dprops = at::cuda::getCurrentDeviceProperties();
bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
TORCH_CHECK(is_sm90, "FlashAttention only supports Hopper GPUs or newer.");
auto q_dtype = q.dtype();
// TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
// "FlashAttention only support fp16 and bf16 data type for now");
// TODO: will add e4m3 later
// TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kFloat8_e4m3fn,
// "FlashAttention only support fp16 and bf16 data type");
// "FlashAttention only support fp16 and fp8 (e4m3) data type for now");
TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
const auto sizes = q.sizes();
const int batch_size = sizes[0];
int seqlen_q = sizes[1];
int num_heads = sizes[2];
const int head_size_og = sizes[3];
const int seqlen_k = k.size(1);
const int num_heads_k = k.size(2);
TORCH_CHECK(batch_size > 0, "batch size must be positive");
TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256");
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
TORCH_CHECK(head_size_og == 64 || head_size_og == 128 || head_size_og == 256, "Only support head size 64, 128, and 256 for now");
CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size_og);
CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size_og);
CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size_og);
at::Tensor q_padded, k_padded, v_padded;
if (head_size_og % 8 != 0) {
q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
} else {
q_padded = q;
k_padded = k;
v_padded = v;
}
at::Tensor out;
if (out_.has_value()) {
out = out_.value();
// TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs");
TORCH_CHECK(q_dtype == at::ScalarType::Float8_e4m3fn
? (out.dtype() == at::kHalf)
: (out.dtype() == q_dtype),
"Output must have the same dtype as input dtype if dtype is "
"not fp8, or fp16 for fp8 input.");
CHECK_DEVICE(out);
TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size_og);
if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); }
} else {
if (q_dtype == at::ScalarType::Float8_e4m3fn)
out = torch::empty_like(q_padded, at::kHalf);
else
out = torch::empty_like(q_padded);
}
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
const int head_size = round_multiple(head_size_og, 8);
const int head_size_rounded = round_multiple(head_size, 32);
const int seqlen_q_rounded = round_multiple(seqlen_q, 128);
const int seqlen_k_rounded = round_multiple(seqlen_k, 128);
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)q.get_device()};
auto opts = q.options();
auto softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));
at::Tensor p;
Flash_fwd_params params;
set_params_fprop(params,
batch_size,
seqlen_q, seqlen_k,
seqlen_q_rounded, seqlen_k_rounded,
num_heads, num_heads_k,
head_size, head_size_rounded,
q_padded, k_padded, v_padded, out,
/*cu_seqlens_q_d=*/nullptr,
/*cu_seqlens_k_d=*/nullptr,
/*seqused_k=*/nullptr,
nullptr,
softmax_lse.data_ptr(),
/*p_dropout=*/0.f,
softmax_scale,
/*window_size_left=*/-1,
/*window_size_right=*/is_causal ? 0 : -1);
auto tile_count_semaphore = is_causal ? torch::zeros({1}, opts.dtype(torch::kInt32)) : torch::empty({1}, opts.dtype(torch::kInt32));
params.tile_count_semaphore = tile_count_semaphore.data_ptr<int>();
if(q_dtype == at::ScalarType::Float8_e4m3fn) {
at::Tensor descale_q, descale_k, descale_v;
if (descale_q_.has_value() && descale_k_.has_value() && descale_k_.has_value()) {
descale_q = descale_q_.value();
descale_k = descale_k_.value();
descale_v = descale_v_.value();
CHECK_DEVICE(descale_q);
CHECK_DEVICE(descale_k);
CHECK_DEVICE(descale_v);
CHECK_SHAPE(descale_q, 1);
CHECK_SHAPE(descale_k, 1);
CHECK_SHAPE(descale_v, 1);
} else {
descale_q = torch::ones({1}, opts.dtype(at::kFloat));
descale_k = torch::ones({1}, opts.dtype(at::kFloat));
descale_v = torch::ones({1}, opts.dtype(at::kFloat));
}
params.descale_q_ptr = descale_q.data_ptr<float>();
params.descale_k_ptr = descale_k.data_ptr<float>();
params.descale_v_ptr = descale_v.data_ptr<float>();
} else {
params.descale_q_ptr = nullptr;
params.descale_k_ptr = nullptr;
params.descale_v_ptr = nullptr;
}
if (seqlen_k > 0) {
auto stream = at::cuda::getCurrentCUDAStream().stream();
run_mha_fwd(params, stream);
} else {
// If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0.
out.zero_();
softmax_lse.fill_(std::numeric_limits<float>::infinity());
}
at::Tensor out_padded = out;
if (head_size_og % 8 != 0) {
out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
if (out_.has_value()) { out_.value().copy_(out); }
}
return {out, q_padded, k_padded, v_padded, out_padded, softmax_lse, p};
}
std::vector<at::Tensor>
mha_varlen_fwd(at::Tensor &q, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
const at::Tensor &k, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
const at::Tensor &v, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
c10::optional<at::Tensor> &out_, // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
const at::Tensor &cu_seqlens_q, // b+1
const at::Tensor &cu_seqlens_k, // b+1
c10::optional<at::Tensor> &seqused_k, // b. If given, only this many elements of each batch element's keys are used.
int max_seqlen_q,
const int max_seqlen_k,
const float softmax_scale,
bool is_causal) {
auto dprops = at::cuda::getCurrentDeviceProperties();
bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
TORCH_CHECK(is_sm90, "FlashAttention only supports Hopper GPUs or newer.");
auto q_dtype = q.dtype();
TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
"FlashAttention only support fp16 and bf16 data type");
TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype int32");
TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype int32");
CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
CHECK_DEVICE(cu_seqlens_q);
CHECK_DEVICE(cu_seqlens_k);
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
CHECK_CONTIGUOUS(cu_seqlens_q);
CHECK_CONTIGUOUS(cu_seqlens_k);
const auto sizes = q.sizes();
const int batch_size = cu_seqlens_q.numel() - 1;
int num_heads = sizes[1];
const int head_size_og = sizes[2];
const int num_heads_k = k.size(1);
int window_size_left = -1;
int window_size_right = -1;
if (is_causal) { window_size_right = 0; }
void *cu_seqlens_q_d = cu_seqlens_q.data_ptr();
const int total_q = q.sizes()[0];
TORCH_CHECK(batch_size > 0, "batch size must be positive");
TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256");
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
if (window_size_left >= max_seqlen_k) { window_size_left = -1; }
if (window_size_right >= max_seqlen_k) { window_size_right = -1; }
CHECK_SHAPE(q, total_q, num_heads, head_size_og);
const int total_k = k.size(0);
CHECK_SHAPE(k, total_k, num_heads_k, head_size_og);
CHECK_SHAPE(v, total_k, num_heads_k, head_size_og);
CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
CHECK_SHAPE(cu_seqlens_k, batch_size + 1);
if (seqused_k.has_value()){
auto seqused_k_ = seqused_k.value();
TORCH_CHECK(seqused_k_.dtype() == torch::kInt32, "seqused_k must have dtype int32");
TORCH_CHECK(seqused_k_.is_cuda(), "seqused_k must be on CUDA device");
TORCH_CHECK(seqused_k_.is_contiguous(), "seqused_k must be contiguous");
CHECK_SHAPE(seqused_k_, batch_size);
}
at::Tensor q_padded, k_padded, v_padded;
if (head_size_og % 8 != 0) {
q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
} else {
q_padded = q;
k_padded = k;
v_padded = v;
}
at::Tensor out;
if (out_.has_value()) {
out = out_.value();
TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs");
CHECK_DEVICE(out);
TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
CHECK_SHAPE(out, sizes[0], sizes[1], head_size_og);
if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); }
} else {
out = torch::empty_like(q_padded);
}
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
const int head_size = round_multiple(head_size_og, 8);
const int head_size_rounded = round_multiple(head_size, 32);
const int seqlen_q_rounded = round_multiple(max_seqlen_q, 128);
const int seqlen_k_rounded = round_multiple(max_seqlen_k, 128);
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)q.get_device()};
auto opts = q.options();
auto softmax_lse = torch::empty({num_heads, total_q}, opts.dtype(at::kFloat));
Flash_fwd_params params;
set_params_fprop(params,
batch_size,
max_seqlen_q, max_seqlen_k,
seqlen_q_rounded, seqlen_k_rounded,
num_heads, num_heads_k,
head_size, head_size_rounded,
q_padded, k_padded, v_padded, out,
cu_seqlens_q_d,
cu_seqlens_k.data_ptr(),
seqused_k.has_value() ? seqused_k.value().data_ptr() : nullptr,
/*p_d=*/nullptr,
softmax_lse.data_ptr(),
/*p_dropout=*/0.f,
softmax_scale,
window_size_left,
window_size_right,
/*seqlenq_ngroups_swapped=*/false,
/*unpadded_lse=*/true);
params.total_q = total_q;
params.total_k = total_k;
if (max_seqlen_k > 0) {
auto stream = at::cuda::getCurrentCUDAStream().stream();
run_mha_fwd(params, stream);
} else {
// If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0.
out.zero_();
softmax_lse.fill_(std::numeric_limits<float>::infinity());
}
at::Tensor out_padded = out;
if (head_size_og % 8 != 0) {
out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
if (out_.has_value()) { out_.value().copy_(out); }
}
return {out, q_padded, k_padded, v_padded, out_padded, softmax_lse};
}
void run_mha_bwd(Flash_bwd_params &params, cudaStream_t stream) {
// FP16_SWITCH(!params.is_bf16, [&] {
// HEADDIM_SWITCH(params.d, [&] {
// run_mha_bwd_<elem_type, kHeadDim>(params, stream);
// });
// });
if (!params.is_bf16) {
if (params.d <= 64) {
run_mha_bwd_<cutlass::half_t, 64>(params, stream);
} else if (params.d <= 96) {
run_mha_bwd_<cutlass::half_t, 96>(params, stream);
} else {
run_mha_bwd_<cutlass::half_t, 128>(params, stream);
}
} else {
if (params.d <= 64) {
run_mha_bwd_<cutlass::bfloat16_t, 64>(params, stream);
} else if (params.d <= 96) {
run_mha_bwd_<cutlass::bfloat16_t, 96>(params, stream);
} else {
run_mha_bwd_<cutlass::bfloat16_t, 128>(params, stream);
}
}
}
std::vector<at::Tensor>
mha_bwd(const at::Tensor &dout, // batch_size x seqlen_q x num_heads, x head_size_og
const at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
const at::Tensor &k, // batch_size x seqlen_k x num_heads_k x head_size
const at::Tensor &v, // batch_size x seqlen_k x num_heads_k x head_size
const at::Tensor &out, // batch_size x seqlen_q x num_heads x head_size
const at::Tensor &softmax_lse, // b x h x seqlen_q
c10::optional<at::Tensor> &dq_, // batch_size x seqlen_q x num_heads x head_size
c10::optional<at::Tensor> &dk_, // batch_size x seqlen_k x num_heads_k x head_size
c10::optional<at::Tensor> &dv_, // batch_size x seqlen_k x num_heads_k x head_size
const float softmax_scale,
const bool is_causal,
const bool deterministic) {
#ifdef FLASHATTENTION_DISABLE_BACKWARD
TORCH_CHECK(false, "This flash attention build does not support backward.");
#endif
auto dprops = at::cuda::getCurrentDeviceProperties();
bool is_sm9x = dprops->major == 9 && dprops->minor >= 0;
TORCH_CHECK(is_sm9x, "FlashAttentionHopper only supports Hopper GPUs or newer.");
auto stream = at::cuda::getCurrentCUDAStream().stream();
auto q_dtype = q.dtype();
TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
"FlashAttention only support fp16 and bf16 data type");
TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
TORCH_CHECK(out.dtype() == q_dtype, "query and out must have the same dtype");
TORCH_CHECK(dout.dtype() == q_dtype, "query and dout must have the same dtype");
CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse);
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension");
TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension");
const auto sizes = q.sizes();
const int batch_size = sizes[0];
const int seqlen_q = sizes[1];
const int num_heads = sizes[2];
const int head_size_og = dout.size(3);
const int head_size = sizes[3];
const int seqlen_k = k.size(1);
const int num_heads_k = k.size(2);
TORCH_CHECK(batch_size > 0, "batch size must be positive");
TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8");
TORCH_CHECK(head_size <= 128, "FlashAttention backward only supports head dimension at most 128");
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
const int head_size_rounded = head_size <= 64 ? 64 : round_multiple(head_size, 32);
// This should match the kernel configs
const int kBlockM = head_size <= 64 ? 128 : (head_size < 256 ? 64 : 32);
const int seqlen_q_rounded = round_multiple(seqlen_q, kBlockM);
const int seqlen_k_rounded = round_multiple(seqlen_k, 128);
TORCH_CHECK(head_size == round_multiple(head_size_og, 8), "head_size must be head_size_og rounded to a multiple of 8");
CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size);
CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size);
CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size);
CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size);
CHECK_SHAPE(dout, batch_size, seqlen_q, num_heads, head_size_og);
at::Tensor dq, dk, dv;
if (dq_.has_value()) {
dq = dq_.value();
TORCH_CHECK(dq.dtype() == q_dtype, "dq must have the same dtype as q");
CHECK_DEVICE(dq);
TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension");
CHECK_SHAPE(dq, batch_size, seqlen_q, num_heads, head_size);
} else {
dq = torch::empty_like(q);
}
if (dk_.has_value()) {
dk = dk_.value();
TORCH_CHECK(dk.dtype() == q_dtype, "dk must have the same dtype as q");
CHECK_DEVICE(dk);
TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension");
CHECK_SHAPE(dk, batch_size, seqlen_k, num_heads_k, head_size);
} else {
dk = torch::empty_like(k);
}
if (dv_.has_value()) {
dv = dv_.value();
TORCH_CHECK(dv.dtype() == q_dtype, "dv must have the same dtype as q");
CHECK_DEVICE(dv);
TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension");
CHECK_SHAPE(dv, batch_size, seqlen_k, num_heads_k, head_size);
} else {
dv = torch::empty_like(v);
}
at::Tensor dout_padded;
if (head_size_og % 8 != 0) {
dout_padded = torch::nn::functional::pad(dout, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
} else {
dout_padded = dout;
}
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)q.get_device()};
auto opts = q.options();
// Need softmax_d to have seqlen_q_rounded since we want its address to be aligned by 16/8 bytes for TMA / LDG.64
auto softmax_d = torch::empty({batch_size, num_heads, seqlen_q_rounded}, opts.dtype(at::kFloat));
auto softmax_lse_log2 = torch::empty({batch_size, num_heads, seqlen_q_rounded}, opts.dtype(at::kFloat));
at::Tensor dq_accum;
at::Tensor dk_accum, dv_accum;
dq_accum = torch::empty({batch_size, num_heads, seqlen_q_rounded, head_size_rounded}, opts.dtype(at::kFloat));
// dk_accum = torch::zeros({batch_size, seqlen_k_rounded, num_heads_k, head_size_rounded}, opts.dtype(at::kFloat));
// dv_accum = torch::zeros({batch_size, seqlen_k_rounded, num_heads_k, head_size_rounded}, opts.dtype(at::kFloat));
at::Tensor dk_expanded, dv_expanded;
if (num_heads_k != num_heads) { // MQA / GQA
dk_expanded = torch::empty({batch_size, seqlen_k, num_heads, head_size}, opts);
dv_expanded = torch::empty({batch_size, seqlen_k, num_heads, head_size}, opts);
} else {
dk_expanded = dk;
dv_expanded = dv;
}
Flash_bwd_params params;
set_params_dgrad(params,
batch_size,
seqlen_q, seqlen_k,
seqlen_q_rounded, seqlen_k_rounded,
num_heads, num_heads_k,
head_size, head_size_rounded,
q, k, v, out,
dout_padded, dq, dk_expanded, dv_expanded,
nullptr,
nullptr,
dq_accum.data_ptr(),
// loop ? dk_accum.data_ptr() : nullptr,
// loop ? dv_accum.data_ptr() : nullptr,
nullptr,
nullptr,
softmax_lse.data_ptr(),
softmax_d.data_ptr(),
/*p_dropout=*/0.f,
softmax_scale,
/*window_size_left=*/-1,
/*window_size_right=*/is_causal ? 0 : -1,
deterministic);
params.softmax_lse_log2_ptr = softmax_lse_log2.data_ptr();
// Will be zero'ed out in the backward preprocess kernel
at::Tensor dq_semaphore = torch::empty({(seqlen_q + kBlockM - 1) / kBlockM, batch_size, num_heads}, opts.dtype(torch::kInt32));
params.dq_semaphore = dq_semaphore.data_ptr<int>();
// printf("dq_semaphore: %p, [%d, %d, %d]\n", params.dq_semaphore, (seqlen_q + 64 - 1) / 64, batch_size, num_heads);
if (seqlen_q > 0) {
run_mha_bwd(params, stream);
} else {
// If seqlen_q == 0, then we have an empty tensor. We need to set the output to 0.
dk_expanded.zero_();
dv_expanded.zero_();
softmax_d.zero_();
}
// For MQA/GQA we need to sum dK and dV across the groups
if (num_heads_k != num_heads) {
at::sum_out(dk, at::reshape(dk_expanded, {batch_size, seqlen_k, num_heads_k, num_heads / num_heads_k, head_size}), {3});
at::sum_out(dv, at::reshape(dv_expanded, {batch_size, seqlen_k, num_heads_k, num_heads / num_heads_k, head_size}), {3});
}
if (head_size_og % 8 != 0) {
dq = dq.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
dk = dk.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
dv = dv.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
}
return { dq, dk, dv, softmax_d, dq_accum};
}
std::vector<at::Tensor>
mha_varlen_bwd(const at::Tensor &dout, // batch_size x seqlen_q x num_heads, x head_size_og
const at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
const at::Tensor &k, // batch_size x seqlen_k x num_heads_k x head_size
const at::Tensor &v, // batch_size x seqlen_k x num_heads_k x head_size
const at::Tensor &out, // batch_size x seqlen_q x num_heads x head_size
const at::Tensor &softmax_lse, // b x h x seqlen_q
c10::optional<at::Tensor> &dq_, // batch_size x seqlen_q x num_heads x head_size
c10::optional<at::Tensor> &dk_, // batch_size x seqlen_k x num_heads_k x head_size
c10::optional<at::Tensor> &dv_, // batch_size x seqlen_k x num_heads_k x head_size
const at::Tensor &cu_seqlens_q, // b+1
const at::Tensor &cu_seqlens_k, // b+1
const int max_seqlen_q,
const int max_seqlen_k, // max sequence length to choose the kernel
const float softmax_scale,
const bool is_causal,
const bool deterministic) {
#ifdef FLASHATTENTION_DISABLE_BACKWARD
TORCH_CHECK(false, "This flash attention build does not support backward.");
#endif
auto dprops = at::cuda::getCurrentDeviceProperties();
bool is_sm9x = dprops->major == 9 && dprops->minor >= 0;
TORCH_CHECK(is_sm9x, "FlashAttentionHopper only supports Hopper GPUs or newer.");
auto stream = at::cuda::getCurrentCUDAStream().stream();
auto q_dtype = q.dtype();
TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
"FlashAttention only support fp16 and bf16 data type");
TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
TORCH_CHECK(out.dtype() == q_dtype, "query and out must have the same dtype");
TORCH_CHECK(dout.dtype() == q_dtype, "query and dout must have the same dtype");
TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype int32");
TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype int32");
CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse);
CHECK_DEVICE(cu_seqlens_q); CHECK_DEVICE(cu_seqlens_k);
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension");
TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension");
CHECK_CONTIGUOUS(cu_seqlens_q);
CHECK_CONTIGUOUS(cu_seqlens_k);
const auto sizes = q.sizes();
const int total_q = sizes[0];
const int batch_size = cu_seqlens_q.numel() - 1;
const int num_heads = sizes[1];
const int head_size_og = dout.size(2);
const int head_size = sizes[2];
const int total_k = k.size(0);
const int num_heads_k = k.size(1);
TORCH_CHECK(batch_size > 0, "batch size must be positive");
TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8");
TORCH_CHECK(head_size <= 128, "FlashAttention backward only supports head dimension at most 128");
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
const int head_size_rounded = head_size <= 64 ? 64 : round_multiple(head_size, 32);
// This should match the kernel configs
const int kBlockM = head_size <= 64 ? 128 : (head_size < 256 ? 64 : 32);
const int seqlen_q_rounded = round_multiple(max_seqlen_q, kBlockM);
const int seqlen_k_rounded = round_multiple(max_seqlen_k, 128);
int const total_q_padded_rounded = round_multiple(total_q + batch_size * 128, 128);
TORCH_CHECK(head_size == round_multiple(head_size_og, 8), "head_size must be head_size_og rounded to a multiple of 8");
CHECK_SHAPE(q, total_q, num_heads, head_size_og);
CHECK_SHAPE(k, total_k, num_heads_k, head_size_og);
CHECK_SHAPE(v, total_k, num_heads_k, head_size_og);
CHECK_SHAPE(out, total_q, num_heads, head_size);
CHECK_SHAPE(dout, total_q, num_heads, head_size_og);
CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
CHECK_SHAPE(cu_seqlens_k, batch_size + 1);
at::Tensor dq, dk, dv;
if (dq_.has_value()) {
dq = dq_.value();
TORCH_CHECK(dq.dtype() == q_dtype, "dq must have the same dtype as q");
CHECK_DEVICE(dq);
TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension");
CHECK_SHAPE(dq, total_q, num_heads, head_size);
} else {
dq = torch::empty_like(q);
}
if (dk_.has_value()) {
dk = dk_.value();
TORCH_CHECK(dk.dtype() == q_dtype, "dk must have the same dtype as q");
CHECK_DEVICE(dk);
TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension");
CHECK_SHAPE(dk, total_k, num_heads_k, head_size);
} else {
dk = torch::empty_like(k);
}
if (dv_.has_value()) {
dv = dv_.value();
TORCH_CHECK(dv.dtype() == q_dtype, "dv must have the same dtype as q");
CHECK_DEVICE(dv);
TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension");
CHECK_SHAPE(dv, total_k, num_heads_k, head_size);
} else {
dv = torch::empty_like(v);
}
at::Tensor dout_padded;
if (head_size_og % 8 != 0) {
dout_padded = torch::nn::functional::pad(dout, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
} else {
dout_padded = dout;
}
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)q.get_device()};
auto opts = q.options();
// Need softmax_d to have total_q_padded_rounded since we want its address to be aligned by 16/8 bytes for TMA / LDG.64
auto softmax_d = torch::empty({num_heads, total_q_padded_rounded}, opts.dtype(at::kFloat));
auto softmax_lse_log2 = torch::empty({num_heads, total_q_padded_rounded}, opts.dtype(at::kFloat));
at::Tensor dq_accum;
at::Tensor dk_accum, dv_accum;
dq_accum = torch::empty({num_heads, total_q_padded_rounded, head_size_rounded}, opts.dtype(at::kFloat));
// dk_accum = torch::zeros({batch_size, seqlen_k_rounded, num_heads_k, head_size_rounded}, opts.dtype(at::kFloat));
// dv_accum = torch::zeros({batch_size, seqlen_k_rounded, num_heads_k, head_size_rounded}, opts.dtype(at::kFloat));
at::Tensor dk_expanded, dv_expanded;
if (num_heads_k != num_heads) { // MQA / GQA
dk_expanded = torch::empty({total_k, num_heads, head_size}, opts);
dv_expanded = torch::empty({total_k, num_heads, head_size}, opts);
} else {
dk_expanded = dk;
dv_expanded = dv;
}
Flash_bwd_params params;
set_params_dgrad(params,
batch_size,
max_seqlen_q, max_seqlen_k,
seqlen_q_rounded, seqlen_k_rounded,
num_heads, num_heads_k,
head_size, head_size_rounded,
q, k, v, out,
dout_padded, dq, dk_expanded, dv_expanded,
cu_seqlens_q.data_ptr(),
cu_seqlens_k.data_ptr(),
dq_accum.data_ptr(),
// loop ? dk_accum.data_ptr() : nullptr,
// loop ? dv_accum.data_ptr() : nullptr,
nullptr,
nullptr,
softmax_lse.data_ptr(),
softmax_d.data_ptr(),
/*p_dropout=*/0.f,
softmax_scale,
/*window_size_left=*/-1,
/*window_size_right=*/is_causal ? 0 : -1,
deterministic);
params.total_q = total_q;
params.total_k = total_k;
params.softmax_lse_log2_ptr = softmax_lse_log2.data_ptr();
// Will be zero'ed out in the backward preprocess kernel
at::Tensor dq_semaphore = torch::empty({(max_seqlen_q + kBlockM - 1) / kBlockM, batch_size, num_heads}, opts.dtype(torch::kInt32));
params.dq_semaphore = dq_semaphore.data_ptr<int>();
if (max_seqlen_q > 0) {
run_mha_bwd(params, stream);
} else {
// If max_seqlen_q == 0, then we have an empty tensor. We need to set the output to 0.
dk_expanded.zero_();
dv_expanded.zero_();
softmax_d.zero_();
}
// For MQA/GQA we need to sum dK and dV across the groups
if (num_heads_k != num_heads) {
at::sum_out(dk, at::reshape(dk_expanded, {total_k, num_heads_k, num_heads / num_heads_k, head_size}), {2});
at::sum_out(dv, at::reshape(dv_expanded, {total_k, num_heads_k, num_heads / num_heads_k, head_size}), {2});
}
if (head_size_og % 8 != 0) {
dq = dq.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
dk = dk.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
dv = dv.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
}
return { dq, dk, dv, softmax_d, dq_accum, softmax_lse_log2 };
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.doc() = "FlashAttention";
m.def("fwd", &mha_fwd, "Forward pass");
m.def("bwd", &mha_bwd, "Backward pass");
m.def("varlen_fwd", &mha_varlen_fwd, "Forward pass (variable length)");
m.def("varlen_bwd", &mha_varlen_bwd, "Varlen backward pass");
}