flash-attention/hopper/flash_fwd_kernel.h

391 lines
19 KiB
C++

/******************************************************************************
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
******************************************************************************/
#pragma once
#include "cute/tensor.hpp"
#include <cutlass/cutlass.h>
#include <cutlass/arch/reg_reconfig.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/numeric_conversion.h>
#include "cutlass/pipeline/pipeline.hpp"
#include "flash.h"
#include "utils.h"
#include "softmax.h"
#include "tile_scheduler.hpp"
#include "mainloop_fwd_sm90_tma_gmma_ws.hpp"
#include "epilogue_fwd_sm90_tma.hpp"
namespace flash {
using namespace cute;
template <typename Ktraits, bool Is_causal, typename TileScheduler, typename Seqlen_traits>
__global__ void __launch_bounds__(Ktraits::kNWarps * cutlass::NumThreadsPerWarp, 1)
compute_attn_ws(CUTE_GRID_CONSTANT typename CollectiveMainloopFwd<Ktraits, Is_causal, Seqlen_traits>::Params const mainloop_params,
CUTE_GRID_CONSTANT typename CollectiveEpilogueFwd<Ktraits, Seqlen_traits>::Params const epilogue_params,
CUTE_GRID_CONSTANT typename TileScheduler::Params const scheduler_params,
Seqlen_traits seqlen_traits_q, Seqlen_traits seqlen_traits_k
) {
using Element = typename Ktraits::Element;
using ElementAccum = typename Ktraits::ElementAccum;
using SoftType = ElementAccum;
using TileShape_MNK = typename Ktraits::TileShape_MNK;
using ClusterShape = typename Ktraits::ClusterShape_MNK;
static_assert(Ktraits::Is_WS);
static constexpr bool Is_WS = Ktraits::Is_WS;
static constexpr int NumMmaThreads = size(typename Ktraits::TiledMma0{});
static constexpr int NumCopyThreads = !Is_WS ? 0 : cutlass::NumThreadsPerWarpGroup;
static constexpr int kBlockM = Ktraits::kBlockM;
// static constexpr int kBlockN = Ktraits::kBlockN;
// constexpr int kHeadDim = Ktraits::kHeadDim;
using CollectiveMainloop = CollectiveMainloopFwd<Ktraits, Is_causal, Seqlen_traits>;
using CollectiveEpilogue = CollectiveEpilogueFwd<Ktraits, Seqlen_traits>;
using MainloopPipeline = typename Ktraits::MainloopPipeline;
using PipelineParams = typename MainloopPipeline::Params;
using PipelineState = typename MainloopPipeline::PipelineState;
extern __shared__ char shared_memory[];
auto &shared_storage = *reinterpret_cast<typename Ktraits::SharedStorage*>(shared_memory);
int const lane_predicate = cute::elect_one_sync();
int const warp_idx = cutlass::canonical_warp_idx_sync();
// Issue Tma Descriptor Prefetch from a single thread
if (warp_idx == 0 && lane_predicate) {
CollectiveMainloop::prefetch_tma_descriptors(mainloop_params);
CollectiveEpilogue::prefetch_tma_descriptors(epilogue_params);
}
// Obtain warp index
int const warp_group_thread_idx = threadIdx.x % cutlass::NumThreadsPerWarpGroup;
PipelineParams pipeline_params;
pipeline_params.transaction_bytes = CollectiveMainloop::TmaTransactionBytesK;
int warp_group_idx = cutlass::canonical_warp_group_idx();
pipeline_params.role = warp_group_idx == 0
? MainloopPipeline::ThreadCategory::Producer
: MainloopPipeline::ThreadCategory::Consumer;
pipeline_params.is_leader = warp_group_thread_idx == 0;
pipeline_params.num_consumers = NumMmaThreads;
if (warp_idx == 0 && lane_predicate) {
shared_storage.barrier_Q.init(1 /*numThreads*/);
shared_storage.barrier_O.init(size(ClusterShape{}) /*numThreads*/);
}
// We're counting on pipeline_k to call cutlass::arch::fence_barrier_init();
MainloopPipeline pipeline_k(shared_storage.pipeline_k, pipeline_params, ClusterShape{});
MainloopPipeline pipeline_v(shared_storage.pipeline_v, pipeline_params, ClusterShape{});
CollectiveMainloop collective_mainloop;
CollectiveEpilogue collective_epilogue;
// We need this to guarantee that the Pipeline init is visible to all producers and consumer blocks in the Cluster
if constexpr (size(ClusterShape{}) > 1) {
cute::cluster_arrive_relaxed();
cute::cluster_wait();
} else {
__syncthreads();
}
static_assert(Ktraits::kNWarps == 12 || Ktraits::kNWarps == 16);
if (warp_group_idx == 0) { // Producer
cutlass::arch::warpgroup_reg_dealloc<Ktraits::kNWarps == 12 ? 24 : 32>();
// cutlass::arch::warpgroup_reg_dealloc<56>();
int warp_idx_in_warpgroup = __shfl_sync(0xffffffff, (threadIdx.x / 32) % 4, 0);
if (warp_idx_in_warpgroup == 0) { // Load Q, K, V
PipelineState smem_pipe_write_k = cutlass::make_producer_start_state<MainloopPipeline>();
PipelineState smem_pipe_write_v = cutlass::make_producer_start_state<MainloopPipeline>();
int work_idx = 0;
TileScheduler scheduler(&shared_storage.tile_count_semaphore);
for (auto work_tile_info = scheduler.get_initial_work();
work_tile_info.is_valid(scheduler_params);
work_tile_info = scheduler.template get_next_work</*IsProducer=*/true>(scheduler_params, work_tile_info)) {
auto block_coord = work_tile_info.get_block_coord(scheduler_params);
auto [m_block, bidh, bidb] = block_coord;
seqlen_traits_q.init(bidb);
seqlen_traits_k.init(bidb);
if (m_block * kBlockM >= seqlen_traits_q.actual_seq_len) {
continue;
}
int n_block_max = collective_mainloop.get_n_block_max(
mainloop_params, m_block, seqlen_traits_q, seqlen_traits_k);
if ((Is_causal || seqlen_traits_k.kUseVarSeqLen) && n_block_max <= 0) {
scheduler.prefetch_next_work(scheduler_params, work_tile_info);
scheduler.broadcast_next_work(work_tile_info);
continue;
}
collective_mainloop.load(mainloop_params, pipeline_k, pipeline_v, smem_pipe_write_k, smem_pipe_write_v,
shared_storage, scheduler, scheduler_params, work_tile_info, block_coord, work_idx,
seqlen_traits_q, seqlen_traits_k);
++work_idx;
}
collective_mainloop.load_tail(pipeline_k, pipeline_v, smem_pipe_write_k, smem_pipe_write_v);
}
} else { // Consumer
cutlass::arch::warpgroup_reg_alloc<Ktraits::kNWarps == 12 ? 240 : 160>();
// cutlass::arch::warpgroup_reg_alloc<Ktraits::kNWarps == 12 ? 224 : 160>();
TileScheduler scheduler(&shared_storage.tile_count_semaphore);
// Initialize matmul objects.
typename Ktraits::TiledMma1 tiled_mma1;
PipelineState smem_pipe_read_k, smem_pipe_read_v;
// We don't need separate variables smem_pipe_release_k and smem_pipe_release_v
// (like in Cutlass's gemm) because the read and release pipeline states are always the same.
collective_mainloop.mma_init();
scheduler.init_consumer();
int work_idx = 0;
CUTLASS_PRAGMA_NO_UNROLL
for (auto work_tile_info = scheduler.get_initial_work();
work_tile_info.is_valid(scheduler_params);
work_tile_info = scheduler.template get_next_work</*IsProducer=*/false>(scheduler_params, work_tile_info)) {
// Attention output (GEMM-II) accumulator.
Tensor tOrO = partition_fragment_C(tiled_mma1, select<0, 2>(TileShape_MNK{}));
flash::Softmax<2 * (2 * kBlockM / NumMmaThreads)> softmax(mainloop_params.softmax_scale_log2);
auto block_coord = work_tile_info.get_block_coord(scheduler_params);
auto [m_block, bidh, bidb] = block_coord;
seqlen_traits_q.init(bidb);
seqlen_traits_k.init(bidb);
if (m_block * kBlockM >= seqlen_traits_q.actual_seq_len) {
continue;
}
int n_block_max = collective_mainloop.get_n_block_max(
mainloop_params, m_block, seqlen_traits_q, seqlen_traits_k);
if ((Is_causal || seqlen_traits_k.kUseVarSeqLen) && n_block_max <= 0) { // We exit early and write 0 to gO and -inf to gLSE.
collective_epilogue.store_zero(epilogue_params, shared_storage, threadIdx.x - NumCopyThreads, block_coord, seqlen_traits_q);
continue;
}
collective_mainloop.mma(mainloop_params, pipeline_k, pipeline_v, smem_pipe_read_k, smem_pipe_read_v,
tOrO, softmax, n_block_max, threadIdx.x - NumCopyThreads, work_idx, m_block, shared_storage,
seqlen_traits_q, seqlen_traits_k);
// tOrO, softmax, n_block_max, threadIdx.x - NumCopyThreads + (work_idx >> 30), work_idx, shared_storage);
collective_epilogue.store(epilogue_params, tOrO, softmax.row_sum, shared_storage, tiled_mma1,
threadIdx.x - NumCopyThreads, block_coord, seqlen_traits_q);
++work_idx;
}
collective_epilogue.store_tail();
}
}
template <typename Ktraits, bool Is_causal, typename TileScheduler, typename Seqlen_traits>
__global__ void __launch_bounds__(Ktraits::kNWarps * cutlass::NumThreadsPerWarp, 1)
compute_attn_ws_fp8(CUTE_GRID_CONSTANT typename CollectiveMainloopFwd<Ktraits, Is_causal, Seqlen_traits>::Params const mainloop_params,
CUTE_GRID_CONSTANT typename CollectiveEpilogueFwd<Ktraits, Seqlen_traits>::Params const epilogue_params,
CUTE_GRID_CONSTANT typename TileScheduler::Params const scheduler_params,
Seqlen_traits seqlen_traits_q, Seqlen_traits seqlen_traits_k
) {
using Element = typename Ktraits::Element;
static_assert(cutlass::sizeof_bits_v<Element> == 8);
using ElementAccum = typename Ktraits::ElementAccum;
using SoftType = ElementAccum;
using TileShape_MNK = typename Ktraits::TileShape_MNK;
using ClusterShape = typename Ktraits::ClusterShape_MNK;
static_assert(Ktraits::Is_WS);
static constexpr bool Is_WS = Ktraits::Is_WS;
static constexpr bool kUseVarSeqLen = Seqlen_traits::kUseVarSeqLen;
static constexpr int NumMmaThreads = size(typename Ktraits::TiledMma0{});
static constexpr int NumCopyThreads = !Is_WS ? 0 : cutlass::NumThreadsPerWarpGroup;
static constexpr int kBlockM = Ktraits::kBlockM;
// static constexpr int kBlockN = Ktraits::kBlockN;
// static constexpr int kHeadDim = Ktraits::kHeadDim;
static constexpr bool Delay_V_release = Is_causal && Ktraits::kHeadDim == 128;
static constexpr bool Use_max_offset = true;
using CollectiveMainloop = CollectiveMainloopFwd<Ktraits, Is_causal, Seqlen_traits>;
using CollectiveEpilogue = CollectiveEpilogueFwd<Ktraits, Seqlen_traits>;
using MainloopPipeline = typename Ktraits::MainloopPipeline;
using MainloopPipelineVt = typename Ktraits::MainloopPipelineNoTMA;
using PipelineParams = typename MainloopPipeline::Params;
using PipelineParamsVt = typename MainloopPipelineVt::Params;
using PipelineState = typename MainloopPipeline::PipelineState;
extern __shared__ char shared_memory[];
auto &shared_storage = *reinterpret_cast<typename Ktraits::SharedStorage*>(shared_memory);
int const lane_predicate = cute::elect_one_sync();
int const warp_idx = cutlass::canonical_warp_idx_sync();
// Issue Tma Descriptor Prefetch from a single thread
if (warp_idx == 0 && lane_predicate) {
CollectiveMainloop::prefetch_tma_descriptors(mainloop_params);
CollectiveEpilogue::prefetch_tma_descriptors(epilogue_params);
}
// Obtain warp index
int const warp_group_thread_idx = threadIdx.x % cutlass::NumThreadsPerWarpGroup;
// additional pipeline to synchronize out-of-place smem transpose of V
PipelineParamsVt pipeline_params_vt;
pipeline_params_vt.producer_arv_count = NumCopyThreads;
pipeline_params_vt.consumer_arv_count = NumMmaThreads;
MainloopPipelineVt pipeline_vt(shared_storage.pipeline_vt, pipeline_params_vt);
PipelineParams pipeline_params;
pipeline_params.transaction_bytes = CollectiveMainloop::TmaTransactionBytesK;
int warp_group_idx = cutlass::canonical_warp_group_idx();
pipeline_params.role = warp_group_idx == 0
? MainloopPipeline::ThreadCategory::Producer
: MainloopPipeline::ThreadCategory::Consumer;
pipeline_params.is_leader = warp_group_thread_idx == 0;
pipeline_params.num_consumers = NumMmaThreads;
if (warp_idx == 0 && lane_predicate) {
shared_storage.barrier_Q.init(1 /*numThreads*/);
shared_storage.barrier_O.init(size(ClusterShape{}) /*numThreads*/);
}
// We're counting on pipeline_k to call cutlass::arch::fence_barrier_init();
MainloopPipeline pipeline_k(shared_storage.pipeline_k, pipeline_params, ClusterShape{});
// pipeline_v has producer warpgroup for its consumer in fp8 kernel
pipeline_params.num_consumers = NumCopyThreads;
pipeline_params.role = MainloopPipeline::ThreadCategory::ProducerConsumer;
MainloopPipeline pipeline_v(shared_storage.pipeline_v, pipeline_params, ClusterShape{});
CollectiveMainloop collective_mainloop;
CollectiveEpilogue collective_epilogue;
float descale_q = *mainloop_params.descale_q_ptr;
float descale_k = *mainloop_params.descale_k_ptr;
float descale_v = *mainloop_params.descale_v_ptr;
shared_storage.softmax_scale_qk_log2 = mainloop_params.softmax_scale_log2 * descale_q * descale_k;
shared_storage.descale_v = descale_v;
// We need this to guarantee that the Pipeline init is visible to all producers and consumer blocks in the Cluster
if constexpr (size(ClusterShape{}) > 1) {
cute::cluster_arrive_relaxed();
cute::cluster_wait();
} else {
__syncthreads();
}
static_assert(Ktraits::kNWarps == 12 || Ktraits::kNWarps == 16);
if (warp_group_idx == 0) { // Producer
cutlass::arch::warpgroup_reg_dealloc<Ktraits::kNWarps == 12 ? 40 : 32>();
PipelineState smem_pipe_write = cutlass::make_producer_start_state<MainloopPipeline>();
PipelineState smem_pipe_read, smem_pipe_release;
int work_idx = 0;
TileScheduler scheduler(&shared_storage.tile_count_semaphore);
for (auto work_tile_info = scheduler.get_initial_work();
work_tile_info.is_valid(scheduler_params);
work_tile_info = scheduler.template get_next_work</*IsProducer=*/true>(scheduler_params, work_tile_info)) {
auto block_coord = work_tile_info.get_block_coord(scheduler_params);
auto [m_block, bidh, bidb] = block_coord;
if constexpr(kUseVarSeqLen) {
seqlen_traits_q.init(bidb);
seqlen_traits_k.init(bidb);
if (m_block * kBlockM >= seqlen_traits_q.actual_seq_len) {
continue;
}
}
int n_block_max = collective_mainloop.get_n_block_max(
mainloop_params, m_block, seqlen_traits_q, seqlen_traits_k);
if constexpr(Is_causal) {
if(n_block_max <= 0) {
scheduler.prefetch_next_work(scheduler_params, work_tile_info);
scheduler.broadcast_next_work(work_tile_info);
// need to sync producer warpgroup
cutlass::arch::NamedBarrier::sync(NumCopyThreads, static_cast<int>(FwdNamedBarriers::ProducerWG) /*id*/);
continue;
}
}
collective_mainloop.load_fp8(
mainloop_params, pipeline_k, pipeline_v, pipeline_vt,
smem_pipe_write, smem_pipe_read, shared_storage,
scheduler, scheduler_params, work_tile_info, block_coord, work_idx,
seqlen_traits_q, seqlen_traits_k);
++work_idx;
// don't need to sync producer warpgroup here
// if constexpr (Is_causal) {
// cutlass::arch::NamedBarrier::sync(NumCopyThreads, static_cast<int>(FwdNamedBarriers::ProducerWG) /*id*/); }
}
collective_mainloop.load_tail_one_write(pipeline_k, pipeline_v, smem_pipe_write);
} else { // Consumer
cutlass::arch::warpgroup_reg_alloc<Ktraits::kNWarps == 12 ? 232 : 160>();
TileScheduler scheduler(&shared_storage.tile_count_semaphore);
// Initialize matmul objects.
typename Ktraits::TiledMma1 tiled_mma1;
PipelineState smem_pipe_read;
PipelineState smem_pipe_release;
collective_mainloop.mma_init();
scheduler.init_consumer();
int work_idx = 0;
CUTLASS_PRAGMA_NO_UNROLL
for (auto work_tile_info = scheduler.get_initial_work();
work_tile_info.is_valid(scheduler_params);
work_tile_info = scheduler.template get_next_work</*IsProducer=*/false>(scheduler_params, work_tile_info)) {
// Attention output (GEMM-II) accumulator.
Tensor tOrO = partition_fragment_C(tiled_mma1, select<0, 2>(TileShape_MNK{}));
flash::Softmax<2 * (2 * kBlockM / NumMmaThreads), Use_max_offset> softmax(shared_storage.softmax_scale_qk_log2);
auto block_coord = work_tile_info.get_block_coord(scheduler_params);
auto [m_block, bidh, bidb] = block_coord;
if constexpr(kUseVarSeqLen) {
seqlen_traits_q.init(bidb);
seqlen_traits_k.init(bidb);
if (m_block * kBlockM >= seqlen_traits_q.actual_seq_len) {
continue;
}
}
int n_block_max = collective_mainloop.get_n_block_max(
mainloop_params, m_block, seqlen_traits_q, seqlen_traits_k);
if constexpr(Is_causal) {
if(n_block_max <= 0) { // We exit early and write 0 to gO and -inf to gLSE.
collective_epilogue.store_zero(epilogue_params, shared_storage, threadIdx.x - NumCopyThreads, block_coord, seqlen_traits_q);
continue;
}
}
collective_mainloop.mma_fp8<Delay_V_release>(
mainloop_params, pipeline_k, pipeline_vt, smem_pipe_read, smem_pipe_release,
tOrO, softmax, n_block_max,
threadIdx.x - NumCopyThreads, work_idx, m_block,
shared_storage, seqlen_traits_q, seqlen_traits_k);
#ifndef NO_FP8_COLUMN_PERMUTE
collective_epilogue.store_fp8(epilogue_params, tOrO, softmax.row_sum, shared_storage, tiled_mma1,
threadIdx.x - NumCopyThreads, block_coord, seqlen_traits_q);
#else
collective_epilogue.store(epilogue_params, tOrO, softmax.row_sum, shared_storage, tiled_mma1,
threadIdx.x - NumCopyThreads, block_coord, seqlen_traits_q);
#endif
++work_idx;
}
collective_epilogue.store_tail();
}
}
} // namespace flash