* fwd var-seq-len * fixes * benchmark * fixes --------- Co-authored-by: Tri Dao <tridao@users.noreply.github.com>
169 lines
5.9 KiB
C++
169 lines
5.9 KiB
C++
/******************************************************************************
|
|
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
|
|
******************************************************************************/
|
|
|
|
#pragma once
|
|
|
|
#include <cutlass/cutlass.h>
|
|
#include <cute/layout.hpp>
|
|
|
|
namespace flash {
|
|
|
|
static constexpr int kMaxTileSize = 128;
|
|
|
|
template <bool UseVarSeqLen> class SeqLenTraits {
|
|
public:
|
|
// Total number of queries / keys. Unpadded.
|
|
int sum_s = 0;
|
|
// seq len offsets.
|
|
int *cu_seq_len = nullptr;
|
|
// actual seq len array.
|
|
int *seq_used = nullptr;
|
|
// seq len of the current batch.
|
|
int actual_seq_len = -1;
|
|
|
|
// Whether this is for fixed-seq-len or var-seq-len.
|
|
static constexpr bool kUseVarSeqLen = UseVarSeqLen;
|
|
|
|
using ShapeT = std::conditional_t<
|
|
UseVarSeqLen,
|
|
cute::Shape<int32_t, int32_t, int32_t>,
|
|
cute::Shape<int32_t, int32_t, int32_t, int32_t>
|
|
>;
|
|
using StrideT = std::conditional_t<
|
|
UseVarSeqLen,
|
|
cute::Shape<int64_t, _1, int64_t>,
|
|
cute::Shape<int64_t, _1, int64_t, int64_t>
|
|
>;
|
|
using LayoutT = cute::Layout<ShapeT, StrideT>;
|
|
|
|
using ShapeLseT = std::conditional_t<
|
|
UseVarSeqLen,
|
|
cute::Shape<int32_t, int32_t>,
|
|
cute::Shape<int32_t, int32_t, int32_t>
|
|
>;
|
|
using StrideLseT = std::conditional_t<
|
|
UseVarSeqLen,
|
|
cute::Shape<int64_t, _1>,
|
|
cute::Shape<int64_t, int64_t, _1>
|
|
>;
|
|
using LayoutLseT = cute::Layout<ShapeLseT, StrideLseT>;
|
|
|
|
CUTLASS_HOST SeqLenTraits() {}
|
|
|
|
CUTLASS_HOST SeqLenTraits(
|
|
int sum_s, int max_seq_len, int *cu_seq_len = nullptr, int *seq_used = nullptr):
|
|
sum_s(sum_s), cu_seq_len(cu_seq_len), seq_used(seq_used), actual_seq_len(max_seq_len) {}
|
|
|
|
// Returns the layout of a tensor in MKHB format in global memory.
|
|
// padded: only useful for var-seq-len for dq_accum and softmax_d.
|
|
CUTLASS_HOST_DEVICE auto get_gmem_layout(
|
|
int m, int k, int h, int b,
|
|
int64_t m_stride, int64_t h_stride, int64_t b_stride,
|
|
bool padded = false) const {
|
|
static_assert(!UseVarSeqLen, "Default implementation is for FixedSeqLen.");
|
|
return make_layout(make_shape(m, k, h, b),
|
|
make_stride(m_stride, cute::_1{}, h_stride, b_stride));
|
|
}
|
|
|
|
// Returns the layout of a tensor in MKHB format in global memory.
|
|
// padded: only useful for var-seq-len for dq_accum and softmax_d.
|
|
CUTLASS_HOST_DEVICE auto get_lse_gmem_layout(
|
|
int m, int h, int b, bool padded = false) const {
|
|
static_assert(!UseVarSeqLen, "Default implementation is for FixedSeqLen.");
|
|
return make_layout(make_shape(b, h, m),
|
|
make_stride(int64_t(h * m), int64_t(m), cute::_1()));
|
|
}
|
|
|
|
CUTLASS_DEVICE void init(int bidb) {}
|
|
|
|
template <typename MTensor, typename Shape>
|
|
CUTLASS_DEVICE auto get_local_tile_tensor(
|
|
const MTensor &m_tensor, const Shape &tile_shape,
|
|
int bidh, int bidb, bool padded = false) const {
|
|
auto g_tensor = local_tile(
|
|
m_tensor(_, _, bidh, bidb), tile_shape, make_coord(_, _0{}));
|
|
return g_tensor;
|
|
}
|
|
|
|
template <typename MTensor, typename Shape>
|
|
CUTLASS_DEVICE auto get_lse_local_tile_tensor(
|
|
const MTensor &m_tensor, const Shape &tile_shape,
|
|
int bidh, int bidb, bool padded = false) const {
|
|
auto g_tensor = local_tile(m_tensor(bidb, bidh, _), tile_shape, make_coord(_));
|
|
return g_tensor;
|
|
}
|
|
};
|
|
|
|
using FixedSeqLenTraits = SeqLenTraits<false>;
|
|
|
|
using VarSeqLenTraits = SeqLenTraits<true>;
|
|
|
|
// Returns the static layout of a var-seq-len tensor in global memory based on
|
|
// max_seq_len and max_batch_size.
|
|
// padded: only useful for var-seq-len for dq_accum and softmax_d.
|
|
// When padded is True, use B_M + kMaxTileSize * B as the total B_M.
|
|
template <>
|
|
CUTLASS_HOST_DEVICE auto VarSeqLenTraits::get_gmem_layout(
|
|
int m, int k, int h, int b,
|
|
int64_t m_stride, int64_t h_stride, int64_t b_stride,
|
|
bool padded) const {
|
|
return make_layout(
|
|
make_shape(sum_s + (padded ? kMaxTileSize * b : 0), k, h),
|
|
make_stride(m_stride, cute::_1{}, h_stride));
|
|
}
|
|
|
|
// padded: only useful for var-seq-len for dq_accum and softmax_d.
|
|
// When padded is True, use B_M + kMaxTileSize * B as the total B_M.
|
|
template <>
|
|
CUTLASS_HOST_DEVICE auto VarSeqLenTraits::get_lse_gmem_layout(
|
|
int m, int h, int b, bool padded) const {
|
|
return make_layout(
|
|
make_shape(h, sum_s + (padded ? kMaxTileSize * b : 0)),
|
|
make_stride(int64_t(sum_s + (padded ? kMaxTileSize * b : 0)), cute::_1()));
|
|
}
|
|
|
|
template <>
|
|
CUTLASS_DEVICE void VarSeqLenTraits::init(int bidb) {
|
|
actual_seq_len =
|
|
seq_used ? seq_used[bidb] : (cu_seq_len[bidb + 1] - cu_seq_len[bidb]);
|
|
}
|
|
|
|
template <>
|
|
template <typename MTensor, typename Shape>
|
|
CUTLASS_DEVICE auto VarSeqLenTraits::get_local_tile_tensor(
|
|
const MTensor &m_tensor, const Shape &tile_shape,
|
|
int bidh, int bidb, bool padded) const {
|
|
auto g_offset = local_tile(
|
|
m_tensor(_, _, bidh),
|
|
cute::make_shape(1, get<1>(tile_shape)),
|
|
make_coord(cu_seq_len[bidb] + (padded ? kMaxTileSize * bidb : 0), _0{}));
|
|
auto g_sequence = make_tensor(
|
|
g_offset.data(),
|
|
make_layout(
|
|
cute::make_shape(actual_seq_len, get<1>(tile_shape)),
|
|
g_offset.stride()
|
|
));
|
|
auto g_tensor = local_tile(g_sequence, tile_shape, make_coord(_, _0{}));
|
|
return g_tensor;
|
|
}
|
|
|
|
template <>
|
|
template <typename MTensor, typename Shape>
|
|
CUTLASS_DEVICE auto VarSeqLenTraits::get_lse_local_tile_tensor(
|
|
const MTensor &m_tensor, const Shape &tile_shape,
|
|
int bidh, int bidb, bool padded) const {
|
|
auto g_offset = local_tile(
|
|
m_tensor(bidh, _), cute::make_shape(_1{}),
|
|
make_coord(cu_seq_len[bidb] + (padded ? kMaxTileSize * bidb : 0)));
|
|
auto g_sequence = make_tensor(
|
|
g_offset.data(),
|
|
make_layout(cute::make_shape(actual_seq_len), cute::make_shape(_1{})));
|
|
auto g_tensor = local_tile(g_sequence, tile_shape, make_coord(_));
|
|
return g_tensor;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace flash
|