* Integrate ck branch of ck_tile/fa_bwd_opt * Assume dq and q share the same stride * update ck * Integrate more stride of dq_acc * Revert fwd dropout * Fix paremeter order * Integrate ck with more stride * update the limit of hdim of bwd * Check argument * Add test_flash_attn_causal * Support unpad lse * Add test_flash_attn_varlen_causal, test_flash_attn_race_condition, test_flash_attn_bwd_overflow, test_flash_attn_bwd_transpose, test_flash_attn_bwd_varlen_overflow, test_flash_attn_deterministic, test_flash_attn_varlen_deterministic * Fix stride and Kn0 * Fix CK sync issue * Fix typo * Update CK for changing of fmha_fwd_args * Add kvcache tmp * Add kvcache * Fix comment * Sync behavior with ck * Update CK to develop * remove large test case * Add kvcache test * Fix page_block_size in arg * Minor fix * Fix stride error * Update seqlen of kvcache before splitkv * Fix compile error * Fix bug of hdim is not 8x * Fit ck arg * support adaptive num_splits * add more tests * Refine test tolerance * update CK * Move override_num_splits_if_necessary into cpp * update ck * Update ck * Support different flag for different version of hip * remove coerce-illegal, becasue this is not required in FA * Update ck to fix xcratch memory * Add coerce-illegal in some version * Add compile flag for rtn rounding * remove redundant init * Using env var to switch rounding mode * update ck
551 lines
24 KiB
Python
551 lines
24 KiB
Python
# Copyright (c) 2023, Tri Dao.
|
|
|
|
import sys
|
|
import warnings
|
|
import os
|
|
import re
|
|
import ast
|
|
import glob
|
|
import shutil
|
|
from pathlib import Path
|
|
from packaging.version import parse, Version
|
|
import platform
|
|
|
|
from setuptools import setup, find_packages
|
|
import subprocess
|
|
|
|
import urllib.request
|
|
import urllib.error
|
|
from wheel.bdist_wheel import bdist_wheel as _bdist_wheel
|
|
|
|
import torch
|
|
from torch.utils.cpp_extension import (
|
|
BuildExtension,
|
|
CppExtension,
|
|
CUDAExtension,
|
|
CUDA_HOME,
|
|
ROCM_HOME,
|
|
IS_HIP_EXTENSION,
|
|
)
|
|
|
|
|
|
with open("README.md", "r", encoding="utf-8") as fh:
|
|
long_description = fh.read()
|
|
|
|
|
|
# ninja build does not work unless include_dirs are abs path
|
|
this_dir = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
BUILD_TARGET = os.environ.get("BUILD_TARGET", "auto")
|
|
|
|
if BUILD_TARGET == "auto":
|
|
if IS_HIP_EXTENSION:
|
|
IS_ROCM = True
|
|
else:
|
|
IS_ROCM = False
|
|
else:
|
|
if BUILD_TARGET == "cuda":
|
|
IS_ROCM = False
|
|
elif BUILD_TARGET == "rocm":
|
|
IS_ROCM = True
|
|
|
|
PACKAGE_NAME = "flash_attn"
|
|
|
|
BASE_WHEEL_URL = (
|
|
"https://github.com/Dao-AILab/flash-attention/releases/download/{tag_name}/{wheel_name}"
|
|
)
|
|
|
|
# FORCE_BUILD: Force a fresh build locally, instead of attempting to find prebuilt wheels
|
|
# SKIP_CUDA_BUILD: Intended to allow CI to use a simple `python setup.py sdist` run to copy over raw files, without any cuda compilation
|
|
FORCE_BUILD = os.getenv("FLASH_ATTENTION_FORCE_BUILD", "FALSE") == "TRUE"
|
|
SKIP_CUDA_BUILD = os.getenv("FLASH_ATTENTION_SKIP_CUDA_BUILD", "FALSE") == "TRUE"
|
|
# For CI, we want the option to build with C++11 ABI since the nvcr images use C++11 ABI
|
|
FORCE_CXX11_ABI = os.getenv("FLASH_ATTENTION_FORCE_CXX11_ABI", "FALSE") == "TRUE"
|
|
|
|
|
|
def get_platform():
|
|
"""
|
|
Returns the platform name as used in wheel filenames.
|
|
"""
|
|
if sys.platform.startswith("linux"):
|
|
return f'linux_{platform.uname().machine}'
|
|
elif sys.platform == "darwin":
|
|
mac_version = ".".join(platform.mac_ver()[0].split(".")[:2])
|
|
return f"macosx_{mac_version}_x86_64"
|
|
elif sys.platform == "win32":
|
|
return "win_amd64"
|
|
else:
|
|
raise ValueError("Unsupported platform: {}".format(sys.platform))
|
|
|
|
|
|
def get_cuda_bare_metal_version(cuda_dir):
|
|
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
|
|
output = raw_output.split()
|
|
release_idx = output.index("release") + 1
|
|
bare_metal_version = parse(output[release_idx].split(",")[0])
|
|
|
|
return raw_output, bare_metal_version
|
|
|
|
|
|
def get_hip_version():
|
|
return parse(torch.version.hip.split()[-1].rstrip('-').replace('-', '+'))
|
|
|
|
|
|
def check_if_cuda_home_none(global_option: str) -> None:
|
|
if CUDA_HOME is not None:
|
|
return
|
|
# warn instead of error because user could be downloading prebuilt wheels, so nvcc won't be necessary
|
|
# in that case.
|
|
warnings.warn(
|
|
f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? "
|
|
"If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
|
|
"only images whose names contain 'devel' will provide nvcc."
|
|
)
|
|
|
|
|
|
def check_if_rocm_home_none(global_option: str) -> None:
|
|
if ROCM_HOME is not None:
|
|
return
|
|
# warn instead of error because user could be downloading prebuilt wheels, so hipcc won't be necessary
|
|
# in that case.
|
|
warnings.warn(
|
|
f"{global_option} was requested, but hipcc was not found."
|
|
)
|
|
|
|
|
|
def append_nvcc_threads(nvcc_extra_args):
|
|
nvcc_threads = os.getenv("NVCC_THREADS") or "4"
|
|
return nvcc_extra_args + ["--threads", nvcc_threads]
|
|
|
|
|
|
def rename_cpp_to_cu(cpp_files):
|
|
for entry in cpp_files:
|
|
shutil.copy(entry, os.path.splitext(entry)[0] + ".cu")
|
|
|
|
|
|
def validate_and_update_archs(archs):
|
|
# List of allowed architectures
|
|
allowed_archs = ["native", "gfx90a", "gfx940", "gfx941", "gfx942"]
|
|
|
|
# Validate if each element in archs is in allowed_archs
|
|
assert all(
|
|
arch in allowed_archs for arch in archs
|
|
), f"One of GPU archs of {archs} is invalid or not supported by Flash-Attention"
|
|
|
|
|
|
cmdclass = {}
|
|
ext_modules = []
|
|
|
|
# We want this even if SKIP_CUDA_BUILD because when we run python setup.py sdist we want the .hpp
|
|
# files included in the source distribution, in case the user compiles from source.
|
|
if IS_ROCM:
|
|
subprocess.run(["git", "submodule", "update", "--init", "csrc/composable_kernel"])
|
|
else:
|
|
subprocess.run(["git", "submodule", "update", "--init", "csrc/cutlass"])
|
|
|
|
if not SKIP_CUDA_BUILD and not IS_ROCM:
|
|
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
|
|
TORCH_MAJOR = int(torch.__version__.split(".")[0])
|
|
TORCH_MINOR = int(torch.__version__.split(".")[1])
|
|
|
|
# Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h
|
|
# See https://github.com/pytorch/pytorch/pull/70650
|
|
generator_flag = []
|
|
torch_dir = torch.__path__[0]
|
|
if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")):
|
|
generator_flag = ["-DOLD_GENERATOR_PATH"]
|
|
|
|
check_if_cuda_home_none("flash_attn")
|
|
# Check, if CUDA11 is installed for compute capability 8.0
|
|
cc_flag = []
|
|
if CUDA_HOME is not None:
|
|
_, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
|
|
if bare_metal_version < Version("11.7"):
|
|
raise RuntimeError(
|
|
"FlashAttention is only supported on CUDA 11.7 and above. "
|
|
"Note: make sure nvcc has a supported version by running nvcc -V."
|
|
)
|
|
# cc_flag.append("-gencode")
|
|
# cc_flag.append("arch=compute_75,code=sm_75")
|
|
cc_flag.append("-gencode")
|
|
cc_flag.append("arch=compute_80,code=sm_80")
|
|
if CUDA_HOME is not None:
|
|
if bare_metal_version >= Version("11.8"):
|
|
cc_flag.append("-gencode")
|
|
cc_flag.append("arch=compute_90,code=sm_90")
|
|
|
|
# HACK: The compiler flag -D_GLIBCXX_USE_CXX11_ABI is set to be the same as
|
|
# torch._C._GLIBCXX_USE_CXX11_ABI
|
|
# https://github.com/pytorch/pytorch/blob/8472c24e3b5b60150096486616d98b7bea01500b/torch/utils/cpp_extension.py#L920
|
|
if FORCE_CXX11_ABI:
|
|
torch._C._GLIBCXX_USE_CXX11_ABI = True
|
|
ext_modules.append(
|
|
CUDAExtension(
|
|
name="flash_attn_2_cuda",
|
|
sources=[
|
|
"csrc/flash_attn/flash_api.cpp",
|
|
"csrc/flash_attn/src/flash_fwd_hdim32_fp16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim32_bf16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim64_fp16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim64_bf16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim96_fp16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim96_bf16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim128_fp16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim128_bf16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim160_fp16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim160_bf16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim192_fp16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim192_bf16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim256_fp16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim256_bf16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim32_fp16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim32_bf16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim64_fp16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim64_bf16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim96_fp16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim96_bf16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim128_fp16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim128_bf16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim160_fp16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim160_bf16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim192_fp16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim192_bf16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim256_fp16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_hdim256_bf16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim32_fp16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim32_bf16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim64_fp16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim64_bf16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim96_fp16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim96_bf16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim128_fp16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim128_bf16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim160_fp16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim160_bf16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim192_fp16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim192_bf16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim256_fp16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim256_bf16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim32_fp16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim32_bf16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim64_fp16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim64_bf16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim96_fp16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim96_bf16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim128_fp16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim128_bf16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim160_fp16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim160_bf16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim192_fp16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim192_bf16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim256_fp16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_bwd_hdim256_bf16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim32_fp16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim32_bf16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim64_fp16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim64_bf16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim96_fp16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim96_bf16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim128_fp16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim128_bf16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim160_fp16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim160_bf16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim192_fp16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim192_bf16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim256_fp16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim256_bf16_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim32_fp16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim32_bf16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim64_fp16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim64_bf16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim96_fp16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim96_bf16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim128_fp16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim128_bf16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim160_fp16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim160_bf16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim192_fp16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim192_bf16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim256_fp16_causal_sm80.cu",
|
|
"csrc/flash_attn/src/flash_fwd_split_hdim256_bf16_causal_sm80.cu",
|
|
],
|
|
extra_compile_args={
|
|
"cxx": ["-O3", "-std=c++17"] + generator_flag,
|
|
"nvcc": append_nvcc_threads(
|
|
[
|
|
"-O3",
|
|
"-std=c++17",
|
|
"-U__CUDA_NO_HALF_OPERATORS__",
|
|
"-U__CUDA_NO_HALF_CONVERSIONS__",
|
|
"-U__CUDA_NO_HALF2_OPERATORS__",
|
|
"-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
|
|
"--expt-relaxed-constexpr",
|
|
"--expt-extended-lambda",
|
|
"--use_fast_math",
|
|
# "--ptxas-options=-v",
|
|
# "--ptxas-options=-O2",
|
|
# "-lineinfo",
|
|
# "-DFLASHATTENTION_DISABLE_BACKWARD",
|
|
# "-DFLASHATTENTION_DISABLE_DROPOUT",
|
|
# "-DFLASHATTENTION_DISABLE_ALIBI",
|
|
# "-DFLASHATTENTION_DISABLE_SOFTCAP",
|
|
# "-DFLASHATTENTION_DISABLE_UNEVEN_K",
|
|
# "-DFLASHATTENTION_DISABLE_LOCAL",
|
|
]
|
|
+ generator_flag
|
|
+ cc_flag
|
|
),
|
|
},
|
|
include_dirs=[
|
|
Path(this_dir) / "csrc" / "flash_attn",
|
|
Path(this_dir) / "csrc" / "flash_attn" / "src",
|
|
Path(this_dir) / "csrc" / "cutlass" / "include",
|
|
],
|
|
)
|
|
)
|
|
elif not SKIP_CUDA_BUILD and IS_ROCM:
|
|
ck_dir = "csrc/composable_kernel"
|
|
|
|
#use codegen get code dispatch
|
|
if not os.path.exists("./build"):
|
|
os.makedirs("build")
|
|
|
|
os.system(f"{sys.executable} {ck_dir}/example/ck_tile/01_fmha/generate.py -d fwd --output_dir build --receipt 2")
|
|
os.system(f"{sys.executable} {ck_dir}/example/ck_tile/01_fmha/generate.py -d fwd_appendkv --output_dir build --receipt 2")
|
|
os.system(f"{sys.executable} {ck_dir}/example/ck_tile/01_fmha/generate.py -d fwd_splitkv --output_dir build --receipt 2")
|
|
os.system(f"{sys.executable} {ck_dir}/example/ck_tile/01_fmha/generate.py -d bwd --output_dir build --receipt 2")
|
|
|
|
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
|
|
TORCH_MAJOR = int(torch.__version__.split(".")[0])
|
|
TORCH_MINOR = int(torch.__version__.split(".")[1])
|
|
|
|
# Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h
|
|
# See https://github.com/pytorch/pytorch/pull/70650
|
|
generator_flag = []
|
|
torch_dir = torch.__path__[0]
|
|
if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")):
|
|
generator_flag = ["-DOLD_GENERATOR_PATH"]
|
|
|
|
check_if_rocm_home_none("flash_attn")
|
|
archs = os.getenv("GPU_ARCHS", "native").split(";")
|
|
validate_and_update_archs(archs)
|
|
|
|
cc_flag = [f"--offload-arch={arch}" for arch in archs]
|
|
|
|
# HACK: The compiler flag -D_GLIBCXX_USE_CXX11_ABI is set to be the same as
|
|
# torch._C._GLIBCXX_USE_CXX11_ABI
|
|
# https://github.com/pytorch/pytorch/blob/8472c24e3b5b60150096486616d98b7bea01500b/torch/utils/cpp_extension.py#L920
|
|
if FORCE_CXX11_ABI:
|
|
torch._C._GLIBCXX_USE_CXX11_ABI = True
|
|
|
|
sources = ["csrc/flash_attn_ck/flash_api.cpp",
|
|
"csrc/flash_attn_ck/flash_common.cpp",
|
|
"csrc/flash_attn_ck/mha_bwd.cpp",
|
|
"csrc/flash_attn_ck/mha_fwd_kvcache.cpp",
|
|
"csrc/flash_attn_ck/mha_fwd.cpp",
|
|
"csrc/flash_attn_ck/mha_varlen_bwd.cpp",
|
|
"csrc/flash_attn_ck/mha_varlen_fwd.cpp"] + glob.glob(
|
|
f"build/fmha_*wd*.cpp"
|
|
)
|
|
|
|
rename_cpp_to_cu(sources)
|
|
|
|
renamed_sources = ["csrc/flash_attn_ck/flash_api.cu",
|
|
"csrc/flash_attn_ck/flash_common.cu",
|
|
"csrc/flash_attn_ck/mha_bwd.cu",
|
|
"csrc/flash_attn_ck/mha_fwd_kvcache.cu",
|
|
"csrc/flash_attn_ck/mha_fwd.cu",
|
|
"csrc/flash_attn_ck/mha_varlen_bwd.cu",
|
|
"csrc/flash_attn_ck/mha_varlen_fwd.cu"] + glob.glob(f"build/fmha_*wd*.cu")
|
|
|
|
cc_flag += ["-O3","-std=c++17",
|
|
"-DCK_TILE_FMHA_FWD_FAST_EXP2=1",
|
|
"-fgpu-flush-denormals-to-zero",
|
|
"-DCK_ENABLE_BF16",
|
|
"-DCK_ENABLE_BF8",
|
|
"-DCK_ENABLE_FP16",
|
|
"-DCK_ENABLE_FP32",
|
|
"-DCK_ENABLE_FP64",
|
|
"-DCK_ENABLE_FP8",
|
|
"-DCK_ENABLE_INT8",
|
|
"-DCK_USE_XDL",
|
|
"-DUSE_PROF_API=1",
|
|
# "-DFLASHATTENTION_DISABLE_BACKWARD",
|
|
"-D__HIP_PLATFORM_HCC__=1"]
|
|
|
|
cc_flag += [f"-DCK_TILE_FLOAT_TO_BFLOAT16_DEFAULT={os.environ.get('CK_TILE_FLOAT_TO_BFLOAT16_DEFAULT', 3)}"]
|
|
|
|
# Imitate https://github.com/ROCm/composable_kernel/blob/c8b6b64240e840a7decf76dfaa13c37da5294c4a/CMakeLists.txt#L190-L214
|
|
hip_version = get_hip_version()
|
|
if hip_version > Version('5.7.23302'):
|
|
cc_flag += ["-fno-offload-uniform-block"]
|
|
if hip_version > Version('6.1.40090'):
|
|
cc_flag += ["-mllvm", "-enable-post-misched=0"]
|
|
if hip_version > Version('6.2.41132'):
|
|
cc_flag += ["-mllvm", "-amdgpu-early-inline-all=true",
|
|
"-mllvm", "-amdgpu-function-calls=false"]
|
|
if hip_version > Version('6.2.41133') and hip_version < Version('6.3.00000'):
|
|
cc_flag += ["-mllvm", "-amdgpu-coerce-illegal-types=1"]
|
|
|
|
extra_compile_args = {
|
|
"cxx": ["-O3", "-std=c++17"] + generator_flag,
|
|
"nvcc": cc_flag + generator_flag,
|
|
}
|
|
|
|
include_dirs = [
|
|
Path(this_dir) / "csrc" / "composable_kernel" / "include",
|
|
Path(this_dir) / "csrc" / "composable_kernel" / "library" / "include",
|
|
Path(this_dir) / "csrc" / "composable_kernel" / "example" / "ck_tile" / "01_fmha",
|
|
]
|
|
|
|
ext_modules.append(
|
|
CUDAExtension(
|
|
name="flash_attn_2_cuda",
|
|
sources=renamed_sources,
|
|
extra_compile_args=extra_compile_args,
|
|
include_dirs=include_dirs,
|
|
)
|
|
)
|
|
|
|
|
|
def get_package_version():
|
|
with open(Path(this_dir) / "flash_attn" / "__init__.py", "r") as f:
|
|
version_match = re.search(r"^__version__\s*=\s*(.*)$", f.read(), re.MULTILINE)
|
|
public_version = ast.literal_eval(version_match.group(1))
|
|
local_version = os.environ.get("FLASH_ATTN_LOCAL_VERSION")
|
|
if local_version:
|
|
return f"{public_version}+{local_version}"
|
|
else:
|
|
return str(public_version)
|
|
|
|
|
|
def get_wheel_url():
|
|
torch_version_raw = parse(torch.__version__)
|
|
python_version = f"cp{sys.version_info.major}{sys.version_info.minor}"
|
|
platform_name = get_platform()
|
|
flash_version = get_package_version()
|
|
torch_version = f"{torch_version_raw.major}.{torch_version_raw.minor}"
|
|
cxx11_abi = str(torch._C._GLIBCXX_USE_CXX11_ABI).upper()
|
|
|
|
if IS_ROCM:
|
|
torch_hip_version = get_hip_version()
|
|
hip_version = f"{torch_hip_version.major}{torch_hip_version.minor}"
|
|
wheel_filename = f"{PACKAGE_NAME}-{flash_version}+rocm{hip_version}torch{torch_version}cxx11abi{cxx11_abi}-{python_version}-{python_version}-{platform_name}.whl"
|
|
else:
|
|
# Determine the version numbers that will be used to determine the correct wheel
|
|
# We're using the CUDA version used to build torch, not the one currently installed
|
|
# _, cuda_version_raw = get_cuda_bare_metal_version(CUDA_HOME)
|
|
torch_cuda_version = parse(torch.version.cuda)
|
|
# For CUDA 11, we only compile for CUDA 11.8, and for CUDA 12 we only compile for CUDA 12.3
|
|
# to save CI time. Minor versions should be compatible.
|
|
torch_cuda_version = parse("11.8") if torch_cuda_version.major == 11 else parse("12.3")
|
|
# cuda_version = f"{cuda_version_raw.major}{cuda_version_raw.minor}"
|
|
cuda_version = f"{torch_cuda_version.major}{torch_cuda_version.minor}"
|
|
|
|
# Determine wheel URL based on CUDA version, torch version, python version and OS
|
|
wheel_filename = f"{PACKAGE_NAME}-{flash_version}+cu{cuda_version}torch{torch_version}cxx11abi{cxx11_abi}-{python_version}-{python_version}-{platform_name}.whl"
|
|
|
|
wheel_url = BASE_WHEEL_URL.format(tag_name=f"v{flash_version}", wheel_name=wheel_filename)
|
|
|
|
return wheel_url, wheel_filename
|
|
|
|
|
|
class CachedWheelsCommand(_bdist_wheel):
|
|
"""
|
|
The CachedWheelsCommand plugs into the default bdist wheel, which is ran by pip when it cannot
|
|
find an existing wheel (which is currently the case for all flash attention installs). We use
|
|
the environment parameters to detect whether there is already a pre-built version of a compatible
|
|
wheel available and short-circuits the standard full build pipeline.
|
|
"""
|
|
|
|
def run(self):
|
|
if FORCE_BUILD:
|
|
return super().run()
|
|
|
|
wheel_url, wheel_filename = get_wheel_url()
|
|
print("Guessing wheel URL: ", wheel_url)
|
|
try:
|
|
urllib.request.urlretrieve(wheel_url, wheel_filename)
|
|
|
|
# Make the archive
|
|
# Lifted from the root wheel processing command
|
|
# https://github.com/pypa/wheel/blob/cf71108ff9f6ffc36978069acb28824b44ae028e/src/wheel/bdist_wheel.py#LL381C9-L381C85
|
|
if not os.path.exists(self.dist_dir):
|
|
os.makedirs(self.dist_dir)
|
|
|
|
impl_tag, abi_tag, plat_tag = self.get_tag()
|
|
archive_basename = f"{self.wheel_dist_name}-{impl_tag}-{abi_tag}-{plat_tag}"
|
|
|
|
wheel_path = os.path.join(self.dist_dir, archive_basename + ".whl")
|
|
print("Raw wheel path", wheel_path)
|
|
os.rename(wheel_filename, wheel_path)
|
|
except (urllib.error.HTTPError, urllib.error.URLError):
|
|
print("Precompiled wheel not found. Building from source...")
|
|
# If the wheel could not be downloaded, build from source
|
|
super().run()
|
|
|
|
|
|
class NinjaBuildExtension(BuildExtension):
|
|
def __init__(self, *args, **kwargs) -> None:
|
|
# do not override env MAX_JOBS if already exists
|
|
if not os.environ.get("MAX_JOBS"):
|
|
import psutil
|
|
|
|
# calculate the maximum allowed NUM_JOBS based on cores
|
|
max_num_jobs_cores = max(1, os.cpu_count() // 2)
|
|
|
|
# calculate the maximum allowed NUM_JOBS based on free memory
|
|
free_memory_gb = psutil.virtual_memory().available / (1024 ** 3) # free memory in GB
|
|
max_num_jobs_memory = int(free_memory_gb / 9) # each JOB peak memory cost is ~8-9GB when threads = 4
|
|
|
|
# pick lower value of jobs based on cores vs memory metric to minimize oom and swap usage during compilation
|
|
max_jobs = max(1, min(max_num_jobs_cores, max_num_jobs_memory))
|
|
os.environ["MAX_JOBS"] = str(max_jobs)
|
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
|
|
setup(
|
|
name=PACKAGE_NAME,
|
|
version=get_package_version(),
|
|
packages=find_packages(
|
|
exclude=(
|
|
"build",
|
|
"csrc",
|
|
"include",
|
|
"tests",
|
|
"dist",
|
|
"docs",
|
|
"benchmarks",
|
|
"flash_attn.egg-info",
|
|
)
|
|
),
|
|
author="Tri Dao",
|
|
author_email="tri@tridao.me",
|
|
description="Flash Attention: Fast and Memory-Efficient Exact Attention",
|
|
long_description=long_description,
|
|
long_description_content_type="text/markdown",
|
|
url="https://github.com/Dao-AILab/flash-attention",
|
|
classifiers=[
|
|
"Programming Language :: Python :: 3",
|
|
"License :: OSI Approved :: BSD License",
|
|
"Operating System :: Unix",
|
|
],
|
|
ext_modules=ext_modules,
|
|
cmdclass={"bdist_wheel": CachedWheelsCommand, "build_ext": NinjaBuildExtension}
|
|
if ext_modules
|
|
else {
|
|
"bdist_wheel": CachedWheelsCommand,
|
|
},
|
|
python_requires=">=3.8",
|
|
install_requires=[
|
|
"torch",
|
|
"einops",
|
|
],
|
|
setup_requires=[
|
|
"packaging",
|
|
"psutil",
|
|
"ninja",
|
|
],
|
|
)
|