flash-attention/flash_attn/modules/embedding.py
2022-11-13 22:06:44 -08:00

36 lines
1.3 KiB
Python

# Copyright (c) 2022, Tri Dao.
import torch
import torch.nn as nn
from einops import repeat
class GPT2Embeddings(nn.Module):
def __init__(self, embed_dim, vocab_size, max_position_embeddings, padding_idx=None):
"""
If max_position_embeddings <= 0, there's no position embeddings
"""
super().__init__()
self.word_embeddings = nn.Embedding(vocab_size, embed_dim, padding_idx=padding_idx)
self.max_position_embeddings = max_position_embeddings
if self.max_position_embeddings > 0:
self.position_embeddings = nn.Embedding(max_position_embeddings, embed_dim)
def forward(self, input_ids, position_ids=None):
"""
input_ids: (batch, seqlen)
"""
batch_size, seqlen = input_ids.shape
input_embeddings = self.word_embeddings(input_ids)
if self.max_position_embeddings > 0:
if position_ids is None:
position_ids = repeat(torch.arange(seqlen, dtype=torch.long,
device=input_ids.device),
's -> b s', b=batch_size)
position_embeddings = self.position_embeddings(position_ids)
return input_embeddings + position_embeddings
else:
return input_embeddings