flash-attention/csrc/flash_attn_ck/mha_fwd.cpp
rocking d8f104e97a
Support AMD ROCm on FlashAttention 2 (#1010)
* Support ck in fmha

* Add ck submodule

* Do not return lse if return_softmax == false

* Use receipt to speed up ck compile time

* Integrate new version of ck_tile

* Support dropout for mha_fwd()

* Add dropout to mha_varlen_fwd()

* Update ck to develop

* Extract padding function for dropout randval

* Extract randval transformation function

* Sync the code structure and coding style with FA

* Remove this line, c++ api will handle this.
Sync with test_flash_attn.py

* fix compile error

* Add mha_bwd

* Generate dropout seed and offset from user generator

* update CK

* Add mha_varlen_bwd

* Use same python as build flash-attn to generate ck kernel

* Fix bug of group mode fwd about returning softmax lse

* larger the test tollerance

* Add test_flash_attn_output() and test_flash_attn_varlen_output()

* Always fill softmax_lse

* Remove duplicate benchmark script, since we already implement mha_bwd

* Refine get value from tuple

* Use default parameter for stream_config

* unblock all platform

* Add comment

* refine the test code

* Refine naming

* Add unpack to namespace

* Do not hardcode the warp size 64

* Add more targets

* Add README

* Optimize mha_fwd if seqlen_q == 1

* Support get_wheel_url for rocm

* Detect rocm environment by pytorch's IS_HIP_EXTENSION

* update to lastest ck

* Add necessary compile flag

* Sync the api with upstream FA

---------

Co-authored-by: carlushuang <carlus.huang@amd.com>
Co-authored-by: Yichen Yan <wenji.yyc@alibaba-inc.com>
Co-authored-by: Po Yen Chen <PoYen.Chen@amd.com>
Co-authored-by: Yichen Yan <oraluben@outlook.com>
2024-07-22 21:34:37 -07:00

349 lines
15 KiB
C++

/******************************************************************************
* Copyright (c) 2024, Tri Dao.
******************************************************************************/
#include "flash_common.hpp"
#include "fmha_fwd.hpp"
#include "mask.hpp"
fmha_fwd_traits get_ck_fmha_fwd_traits(const mask_info &mask,
std::string dtype,
int head_size,
bool has_dropout,
bool has_lse,
bool enable_alibi)
{
return fmha_fwd_traits{head_size,
head_size,
dtype,
false, // is_group_mode
true, // is_v_rowmajor
mask.type,
enable_alibi ? bias_enum::alibi : bias_enum::no_bias,
has_lse,
has_dropout,
false}; // do_fp8_static_quant
}
fmha_fwd_args get_ck_fmha_fwd_args(bool has_lse,
bool has_dropout_randval,
const mask_info &mask,
// sizes
const int b,
const int seqlen_q,
const int seqlen_k,
const int h,
const int h_k,
const int d,
// device pointers
const at::Tensor q,
const at::Tensor k,
const at::Tensor v,
c10::optional<at::Tensor> &alibi_slopes_,
at::Tensor out,
at::Tensor softmax_lse,
at::Tensor dropout_randval,
float softmax_scale,
float p_dropout,
uint64_t drop_seed,
uint64_t drop_offset)
{
// q: (batch_size, seqlen_q, nheads, d)
// k: (batch_size, seqlen_k, nheads_k, d)
// v: (batch_size, seqlen_k, nheads_k, d)
// o: (batch_size, seqlen_q, nheads, d)
// alibi_slopes:(batch_size, nheads) or (nhead)
// lse: (batch_size, nheads, seqlen_q)
// randval: (batch_size, nheads, seqlen_q, seqlen_k)
ck_tile::index_t stride_q = q.stride(1);
ck_tile::index_t stride_k = k.stride(1);
ck_tile::index_t stride_v = v.stride(1);
ck_tile::index_t stride_o = out.stride(1);
ck_tile::index_t stride_randval = has_dropout_randval ? dropout_randval.stride(2) : 0;
ck_tile::index_t nhead_stride_q = q.stride(2);
ck_tile::index_t nhead_stride_k = k.stride(2);
ck_tile::index_t nhead_stride_v = v.stride(2);
ck_tile::index_t nhead_stride_o = out.stride(2);
ck_tile::index_t nhead_stride_lse = has_lse ? softmax_lse.stride(1) : 0;
ck_tile::index_t nhead_stride_randval = has_dropout_randval ? dropout_randval.stride(1) : 0;
ck_tile::index_t batch_stride_q = q.stride(0);
ck_tile::index_t batch_stride_k = k.stride(0);
ck_tile::index_t batch_stride_v = v.stride(0);
ck_tile::index_t batch_stride_o = out.stride(0);
ck_tile::index_t batch_stride_lse = has_lse ? softmax_lse.stride(0) : 0;
ck_tile::index_t batch_stride_randval = has_dropout_randval ? dropout_randval.stride(0) : 0;
void *alibi_slopes_ptr = nullptr;
ck_tile::index_t stride_alibi_slopes = 0;
if (alibi_slopes_.has_value()) {
auto alibi_slopes = alibi_slopes_.value();
CHECK_DEVICE(alibi_slopes);
TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension");
TORCH_CHECK(alibi_slopes.sizes() == torch::IntArrayRef({h}) || alibi_slopes.sizes() == torch::IntArrayRef({b, h}));
alibi_slopes_ptr = alibi_slopes.data_ptr();
stride_alibi_slopes = alibi_slopes.dim() == 2 ? alibi_slopes.stride(0) : 0;
}
return fmha_fwd_args{q.data_ptr(),
k.data_ptr(),
v.data_ptr(),
alibi_slopes_ptr, // bias
has_dropout_randval ? dropout_randval.data_ptr() : nullptr,
nullptr, // lse_acc
nullptr, // o_acc
has_lse ? softmax_lse.data_ptr() : nullptr,
out.data_ptr(),
nullptr, // seqstart_q
nullptr, // seqstart_k
nullptr,
seqlen_q,
seqlen_k,
b,
seqlen_q, // max_seqlen_q
d, // hdim_q
d, // hdim_v
h, // nhead
h_k, // nhead_k
1, // num_splits
softmax_scale, // scale_s
1, // scale_p
1, // scale_o
stride_q,
stride_k,
stride_v,
stride_alibi_slopes,
stride_randval,
0, // stride_o_acc,
stride_o,
nhead_stride_q,
nhead_stride_k,
nhead_stride_v,
0, // nhead_stride_bias, FA without bias
nhead_stride_randval,
nhead_stride_lse,
0, // nhead_stride_lse_acc
0, // nhead_stride_o_acc
nhead_stride_o,
batch_stride_q,
batch_stride_k,
batch_stride_v,
0, // batch_stride_bias, FA without bias
batch_stride_randval,
batch_stride_lse,
0, // batch_stride_lse_acc
0, // batch_stride_o_acc
batch_stride_o,
0, // split_stride_lse_acc
0, // split_stride_o_acc
mask.left,
mask.right,
static_cast<ck_tile::index_t>(mask.type),
p_dropout,
has_dropout_randval,
{drop_seed, drop_offset}};
}
std::vector<at::Tensor>
mha_fwd(at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
const at::Tensor &k, // batch_size x seqlen_k x num_heads_k x head_size
const at::Tensor &v, // batch_size x seqlen_k x num_heads_k x head_size
c10::optional<at::Tensor> &out_, // batch_size x seqlen_q x num_heads x head_size
c10::optional<at::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
const float p_dropout,
const float softmax_scale,
bool is_causal,
int window_size_left,
int window_size_right,
const float /*softcap*/,
const bool return_dropout_randval,
c10::optional<at::Generator> gen_)
{
auto q_dtype = q.dtype();
TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
"FlashAttention only support fp16 and bf16 data type");
TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
std::string q_dtype_str = q_dtype == torch::kFloat16 ? "fp16" : "bf16";
CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
const auto sizes = q.sizes();
const int batch_size = sizes[0];
int seqlen_q = sizes[1];
int num_heads = sizes[2];
const int head_size_og = sizes[3];
const int seqlen_k = k.size(1);
const int num_heads_k = k.size(2);
TORCH_CHECK(batch_size > 0, "batch size must be positive");
TORCH_CHECK(head_size_og <= 256, "CK only supports head dimension at most 256");
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
if (window_size_left >= seqlen_k) { window_size_left = -1; }
if (window_size_right >= seqlen_k) { window_size_right = -1; }
// causal=true is the same as causal=false in this case
if (seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; }
mask_info mask;
if (is_causal) {
// Causal is the special case where window_size_right == 0 and window_size_left < 0.
window_size_right = 0;
std::string mask_identify = "b:" + std::to_string(window_size_left) + "," + "0";
mask = mask_info::decode(mask_identify, seqlen_q, seqlen_k); // casual
}
else if (window_size_left == -1 && window_size_right == -1) {
mask = mask_info::decode("0", seqlen_q, seqlen_k); // no mask
}
else {
// Local is the more general case where window_size_right >= 0 or window_size_left >= 0.
std::string mask_identify = "b:" + std::to_string(window_size_left) + "," + std::to_string(window_size_right);
mask = mask_info::decode(mask_identify, seqlen_q, seqlen_k); // local
}
// Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
// H/t Daniel Haziza
const int seqlenq_ngroups_swapped = seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && p_dropout == 0.f && head_size_og % 8 == 0 && !alibi_slopes_.has_value();
const int ngroups = num_heads / num_heads_k;
if (seqlenq_ngroups_swapped) {
q = q.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2);
seqlen_q = ngroups;
num_heads = num_heads_k;
}
CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size_og);
CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size_og);
CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size_og);
at::Tensor q_padded, k_padded, v_padded;
if (head_size_og % 8 != 0) {
q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
}
else {
q_padded = q;
k_padded = k;
v_padded = v;
}
at::Tensor out;
if (out_.has_value()) {
out = out_.value();
TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs");
CHECK_DEVICE(out);
TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
CHECK_SHAPE(out, batch_size, sizes[1], sizes[2], head_size_og);
if (seqlenq_ngroups_swapped) {
out = out.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2);
}
if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); }
}
else {
out = torch::empty_like(q_padded);
}
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
const int head_size_8x = round_multiple(head_size_og, 8);
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)q.get_device()};
auto opts = q.options();
bool has_lse = true;
bool has_dropout = p_dropout > 0.0f;
at::Tensor softmax_lse;
// TODO - check gradient, only training require lse
softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(torch::kFloat32));
at::Tensor p;
if (return_dropout_randval) {
TORCH_CHECK(has_dropout, "return_dropout_randval require p_dropout > 0");
p = torch::empty({batch_size, num_heads, seqlen_q, seqlen_k}, opts.dtype(torch::kUInt8));
}
uint64_t drop_seed = 1, drop_offset = 0;
int64_t counter_offset = batch_size * num_heads * ck_tile::get_warp_size();
auto options = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA);
auto rng_state = torch::empty({2}, options.dtype(torch::kInt64));
if (p_dropout > 0.0) {
auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
gen_, at::cuda::detail::getDefaultCUDAGenerator());
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(gen->mutex_);
auto philox_args = gen->philox_cuda_state(counter_offset);
std::tie(drop_seed, drop_offset) = flash::unpack(philox_args);
}
rng_state[0] = *(reinterpret_cast<int64_t*>(&drop_seed));
rng_state[1] = *(reinterpret_cast<int64_t*>(&drop_offset));
if (seqlen_k > 0) {
auto stream = at::cuda::getCurrentHIPStream().stream();
ck_tile::stream_config stream_config{stream};
auto traits =
get_ck_fmha_fwd_traits(mask, q_dtype_str, head_size_8x, has_dropout, has_lse, alibi_slopes_.has_value());
auto args =
get_ck_fmha_fwd_args(
has_lse,
return_dropout_randval,
mask,
batch_size,
seqlen_q,
seqlen_k,
num_heads,
num_heads_k,
head_size_8x,
q_padded,
k_padded,
v_padded,
alibi_slopes_,
out,
softmax_lse,
p,
softmax_scale,
p_dropout,
drop_seed,
drop_offset);
fmha_fwd(traits, args, stream_config);
}
else {
// If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0.
out.zero_();
softmax_lse.fill_(std::numeric_limits<float>::infinity());
}
at::Tensor out_padded = out;
if (head_size_og % 8 != 0) {
out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
if (out_.has_value()) { out_.value().copy_(out); }
}
if (seqlenq_ngroups_swapped) {
out = out.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
out_padded = out_padded.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
q_padded = q_padded.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
softmax_lse = softmax_lse.reshape({batch_size, num_heads_k * seqlen_q, 1});
}
return {out, q_padded, k_padded, v_padded, out_padded, softmax_lse, p, rng_state};
}