flash-attention/flash_attn/ops/fused_dense.py
2023-03-15 16:59:27 -07:00

527 lines
25 KiB
Python

# Copyright (c) 2023, Tri Dao.
# Inspired by https://github.com/NVIDIA/apex/blob/master/apex/fused_dense/fused_dense.py
# We make it work with pytorch amp and with bfloat16.
# The TensorParallel linear modules are inspired by https://github.com/NVIDIA/apex/blob/master/apex/transformer/tensor_parallel/layers.py
from typing import Optional
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.distributed import ProcessGroup
from torch.cuda.amp import custom_bwd, custom_fwd
# import fused_dense_cuda # from apex
import fused_dense_lib as fused_dense_cuda
from flash_attn.ops.gelu_activation import gelu_bwd
from flash_attn.utils.distributed import all_gather_raw, reduce_scatter_raw, all_reduce_raw
from flash_attn.utils.distributed import reduce_scatter, all_reduce
@torch.jit.script
def relu_bwd(g, x):
return torch.where(x >= 0, g, 0.0).to(dtype=x.dtype)
class FusedDenseFunc(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, x, weight, bias, return_residual=False, process_group=None,
sequence_parallel=True):
"""
If process_group is not None and sequence_parallel=True, we're doing Tensor Parallel
with sequence parallelism: we do an all_gather_raw of x before doing the matmul.
"""
ctx.compute_weight_gradient = weight.requires_grad
ctx.return_residual = return_residual
ctx.process_group = process_group
ctx.sequence_parallel = sequence_parallel
if torch.is_autocast_enabled():
x = x.to(dtype=torch.get_autocast_gpu_dtype())
x = x.contiguous()
if process_group is not None and sequence_parallel:
# We want to kick off the all_gather early, before weight dtype conversion
total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
else:
total_x = x
if torch.is_autocast_enabled():
weight = weight.to(dtype=torch.get_autocast_gpu_dtype())
bias = bias.to(dtype=torch.get_autocast_gpu_dtype()) if bias is not None else None
weight = weight.contiguous()
if process_group is not None and sequence_parallel:
handle_x.wait()
batch_shape, n = total_x.shape[:-1], total_x.shape[-1]
batch_dim = batch_shape.numel()
# https://github.com/pytorch/pytorch/blob/5b51849b48a7dbccd297286cc0110def4706f9e7/aten/src/ATen/native/cuda/Blas.cpp#L174
if min(batch_dim, n, *weight.shape) > 65535 * 32:
raise RuntimeError('fused_dense only supports matrix dims <= 2M')
output = F.linear(total_x, weight, bias)
if ctx.compute_weight_gradient:
ctx.save_for_backward(x, weight)
else:
ctx.save_for_backward(weight)
return output if not return_residual else (output, x)
@staticmethod
@custom_bwd
def backward(ctx, grad_output, *args):
grad_output = grad_output.contiguous()
if ctx.return_residual:
grad_input, = args
grad_input = grad_input.contiguous()
process_group = ctx.process_group
sequence_parallel = ctx.sequence_parallel
if ctx.compute_weight_gradient:
x, weight = ctx.saved_tensors
if process_group is not None and sequence_parallel:
total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
else:
total_x = x
else:
weight, = ctx.saved_tensors
total_x = None
batch_shape = grad_output.shape[:-1]
batch_dim = batch_shape.numel()
grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
if ctx.needs_input_grad[0]:
if not ctx.return_residual:
grad_input = F.linear(grad_output, weight.t())
else:
grad_input = torch.addmm(grad_input.reshape(batch_dim, grad_input.shape[-1]),
grad_output, weight)
grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1])
if process_group is not None:
reduce_fn = reduce_scatter_raw if sequence_parallel else all_reduce_raw
grad_input, handle_grad_input = reduce_fn(grad_input, process_group, async_op=True)
else:
grad_input = None
if ctx.needs_input_grad[1]:
assert ctx.compute_weight_gradient
if process_group is not None and sequence_parallel:
handle_x.wait()
grad_weight, grad_bias = fused_dense_cuda.linear_bias_wgrad(
total_x.reshape(batch_dim, total_x.shape[-1]), grad_output, ctx.needs_input_grad[2]
)
else:
grad_weight = None
grad_bias = grad_output if ctx.needs_input_grad[2] else None
if process_group is not None and ctx.needs_input_grad[0]:
handle_grad_input.wait()
return grad_input, grad_weight, grad_bias, None, None, None
def fused_dense_func(x: Tensor, weight: Tensor, bias: Optional[Tensor] = None,
return_residual: bool = False, process_group: Optional[ProcessGroup] = None,
sequence_parallel: bool = True):
dtype_eligible = (x.dtype in [torch.float16, torch.bfloat16]
or (x.dtype == torch.float32 and torch.is_autocast_enabled()))
if x.is_cuda and weight.is_cuda and (bias is None or bias.is_cuda) and dtype_eligible:
return FusedDenseFunc.apply(x, weight, bias, return_residual, process_group,
sequence_parallel)
else:
assert process_group is None
out = F.linear(x, weight, bias)
return out if not return_residual else (out, x)
class FusedDense(nn.Linear):
def __init__(self, in_features: int, out_features: int, bias: bool = True,
return_residual: bool = False, device=None, dtype=None) -> None:
super().__init__(in_features, out_features, bias=bias, device=device, dtype=dtype)
self.return_residual = return_residual
def forward(self, x, process_group=None):
"""
If process_group is not None, we're doing Tensor Parallel with sequence parallelism:
we do an all_gather of x before doing the matmul.
"""
return fused_dense_func(x, self.weight, self.bias, return_residual=self.return_residual,
process_group=process_group)
class ColumnParallelLinear(nn.Linear):
def __init__(self, in_features: int, out_features: int, process_group: ProcessGroup,
bias: bool = True, sequence_parallel=True, device=None, dtype=None) -> None:
world_size = torch.distributed.get_world_size(process_group)
if out_features % world_size != 0:
raise ValueError(f'out_features ({out_features}) must be divisible by '
f'world_size ({world_size})')
super().__init__(in_features, out_features // world_size, bias=bias,
device=device, dtype=dtype)
self.process_group = process_group
self.sequence_parallel = sequence_parallel
def forward(self, x):
# If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism:
# we do an all_gather of x before doing the matmul.
# If not, then the input is already gathered.
return fused_dense_func(x, self.weight, self.bias, process_group=self.process_group,
sequence_parallel=self.sequence_parallel)
class RowParallelLinear(nn.Linear):
def __init__(self, in_features: int, out_features: int, process_group: ProcessGroup,
bias: bool = True, sequence_parallel=True, device=None, dtype=None) -> None:
world_size = torch.distributed.get_world_size(process_group)
rank = torch.distributed.get_rank(process_group)
if in_features % world_size != 0:
raise ValueError(f'in_features ({in_features}) must be divisible by '
f'world_size ({world_size})')
# Only rank 0 will have bias
super().__init__(in_features // world_size, out_features, bias=bias and rank == 0,
device=device, dtype=dtype)
self.process_group = process_group
self.sequence_parallel = sequence_parallel
def forward(self, x):
"""
We're doing Tensor Parallel with sequence parallelism: we do the matmul and then
a reduce_scatter of the result.
"""
out = fused_dense_func(x, self.weight, self.bias)
reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce
return reduce_fn(out, self.process_group)
class FusedMLPFunc(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, x, weight1, bias1, weight2, bias2, activation='gelu_approx', save_pre_act=True,
return_residual=False, checkpoint_lvl=0, heuristic=0, process_group=None,
sequence_parallel=True):
"""
If process_group is not None and sequence_parallel=True, we're doing Tensor Parallel
with sequence parallelism: we do an all_gather of x before doing the matmul.
If sequence_parallel=False, then the input is already gathered.
checkpoint_lvl:
0: no recomputation in the bwd
1: recompute gelu_out / relu_out in the bwd
2: recompute pre_act and gelu_out / relu_out in the bwd
"""
assert -1 <= heuristic <= 4
assert activation in ['gelu_approx', 'relu']
if not save_pre_act:
checkpoint_lvl = 2
assert checkpoint_lvl in [0, 1, 2]
ctx.return_residual = return_residual
ctx.process_group = process_group
ctx.sequence_parallel = sequence_parallel
ctx.checkpoint_lvl = checkpoint_lvl
ctx.activation = activation
ctx.heuristic = heuristic
if torch.is_autocast_enabled():
x = x.to(dtype=torch.get_autocast_gpu_dtype())
x = x.contiguous()
if process_group is not None and sequence_parallel:
# We want to kick off the all_gather early, before weight dtype conversion
total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
else:
total_x = x
if torch.is_autocast_enabled():
dtype = torch.get_autocast_gpu_dtype()
weight1, weight2 = [a.to(dtype=dtype) for a in [weight1, weight2]]
bias1 = bias1.to(dtype=dtype) if bias1 is not None else None
bias2 = bias2.to(dtype=dtype) if bias2 is not None else None
weight1 = weight1.contiguous()
bias1 = bias1.contiguous() if bias1 is not None else None
weight2 = weight2.contiguous()
bias2 = bias2.contiguous() if bias2 is not None else None
if process_group is not None and sequence_parallel:
handle_x.wait()
batch_shape, n = total_x.shape[:-1], total_x.shape[-1]
batch_dim = batch_shape.numel()
# https://github.com/pytorch/pytorch/blob/5b51849b48a7dbccd297286cc0110def4706f9e7/aten/src/ATen/native/cuda/Blas.cpp#L174
if min(batch_dim, n, *weight1.shape, *weight2.shape) > 65535 * 32:
raise RuntimeError('fused_dense only supports matrix dims <= 2M')
if heuristic == -1:
pre_act = F.linear(total_x, weight1, bias1)
activation_fn = (partial(F.gelu, approximate='tanh') if activation == 'gelu_approx'
else F.relu)
output1 = activation_fn(pre_act)
# This is before adding bias1
# pre_act = F.linear(total_x.reshape(batch_dim, n), weight1)
# with torch.jit.fuser('fuser2'):
# output1 = bias_gelu(pre_act, bias1)
else:
is_gelu = activation == 'gelu_approx'
output1, *rest = fused_dense_cuda.linear_act_forward(
total_x.reshape(batch_dim, n), weight1, bias1, is_gelu, save_pre_act, heuristic
)
if save_pre_act:
pre_act = rest[0]
output2 = F.linear(output1, weight2, bias2)
if checkpoint_lvl == 0 or (checkpoint_lvl == 1 and activation == 'relu'):
# For RELU the pre_act is very small (just a bit-mask) so we just save it
ctx.save_for_backward(x, weight1, weight2, pre_act, output1)
elif checkpoint_lvl == 1:
ctx.save_for_backward(x, weight1, weight2, pre_act)
elif checkpoint_lvl == 2:
ctx.save_for_backward(x, weight1, weight2, bias1)
output2 = output2.reshape(*batch_shape, output2.shape[-1])
return output2 if not return_residual else (output2, x)
@staticmethod
@custom_bwd
def backward(ctx, grad_output, *args):
grad_output = grad_output.contiguous()
checkpoint_lvl = ctx.checkpoint_lvl
activation = ctx.activation
activation_fn = (partial(F.gelu, approximate='tanh') if activation == 'gelu_approx'
else F.relu)
if ctx.return_residual:
grad_input, = args
grad_input = grad_input.contiguous()
process_group = ctx.process_group
sequence_parallel = ctx.sequence_parallel
x, weight1, weight2, *rest = ctx.saved_tensors
if process_group is None or not sequence_parallel:
total_x = x
batch_shape = grad_output.shape[:-1]
batch_dim = batch_shape.numel()
if checkpoint_lvl in [0, 1]:
if process_group is not None and sequence_parallel:
total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
if checkpoint_lvl == 0 or (checkpoint_lvl == 1 and activation == 'relu'):
pre_act, output1 = rest
elif checkpoint_lvl == 1:
pre_act, = rest
output1 = activation_fn(pre_act)
elif checkpoint_lvl == 2:
bias1, = rest
if process_group is not None and sequence_parallel:
total_x, _ = all_gather_raw(x, process_group)
if ctx.heuristic == -1:
pre_act = F.linear(total_x, weight1, bias1)
output1 = activation_fn(pre_act)
else:
output1, pre_act = fused_dense_cuda.linear_act_forward(
total_x.reshape(batch_dim, total_x.shape[-1]), weight1, bias1,
activation == 'gelu_approx', True, ctx.heuristic
)
grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
output1 = output1.reshape(batch_dim, output1.shape[-1])
pre_act = pre_act.reshape(batch_dim, pre_act.shape[-1])
if ctx.needs_input_grad[3]:
grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(
output1, grad_output, ctx.needs_input_grad[4]
)
else:
grad_weight2 = None
grad_bias2 = grad_output if ctx.needs_input_grad[4] else None
if ctx.heuristic == -1:
# grad_pre_act = matmul_dgelu(grad_output, weight2, pre_act)
grad_output1 = F.linear(grad_output, weight2.t())
with torch.jit.fuser('fuser2'):
activation_grad_fn = gelu_bwd if activation == 'gelu_approx' else relu_bwd
grad_pre_act = activation_grad_fn(grad_output1, pre_act)
else:
# The cublasLt epilogue has to compute both gelu/relu grad and bias grad, we can't
# just compute gelu/relu grad
grad_pre_act, grad_bias1 = fused_dense_cuda.bias_act_linear_dgrad_bgrad(
weight2, grad_output, pre_act, activation == 'gelu_approx', ctx.heuristic
)
if not ctx.needs_input_grad[2]:
grad_bias1 = None
if ctx.needs_input_grad[0]:
if not ctx.return_residual:
grad_input = F.linear(grad_pre_act, weight1.t())
else:
grad_input = torch.addmm(grad_input.reshape(batch_dim, grad_input.shape[-1]),
grad_pre_act, weight1)
grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1])
if process_group is not None:
reduce_fn = reduce_scatter_raw if sequence_parallel else all_reduce_raw
grad_input, handle_grad_input = reduce_fn(grad_input, process_group, async_op=True)
else:
grad_input = None
if ctx.heuristic == -1:
if ctx.needs_input_grad[1]:
if process_group is not None and sequence_parallel:
handle_x.wait()
grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_wgrad(
total_x.reshape(batch_dim, total_x.shape[-1]), grad_pre_act,
ctx.needs_input_grad[2]
)
else:
grad_weight1 = None
grad_bias1 = grad_pre_act if ctx.needs_input_grad[2] else None
else:
if ctx.needs_input_grad[1]:
if process_group is not None and sequence_parallel:
handle_x.wait()
grad_weight1 = F.linear(grad_pre_act.t(),
total_x.reshape(batch_dim, total_x.shape[-1]).t())
else:
grad_weight1 = None
if process_group is not None and ctx.needs_input_grad[0]:
handle_grad_input.wait()
return (grad_input, grad_weight1, grad_bias1, grad_weight2, grad_bias2,
None, None, None, None, None, None, None)
def fused_mlp_func(
x: Tensor, weight1: Tensor, weight2: Tensor, bias1: Optional[Tensor] = None,
bias2: Optional[Tensor] = None, activation: str = 'gelu_approx',
save_pre_act: bool = True, return_residual: bool = False,
checkpoint_lvl: int = 0, heuristic: int = 0,
process_group: Optional[ProcessGroup] = None,
sequence_parallel: bool = True
):
assert activation in ['gelu_approx', 'relu']
dtype_eligible = (x.dtype in [torch.float16, torch.bfloat16]
or (x.dtype == torch.float32 and torch.is_autocast_enabled()))
# If we save pre-activation, dimension must be divisible by 128 (relu) or 8 (gelu)
dim_eligible = not save_pre_act or (x.shape[-1] % (128 if activation == 'relu' else 8) == 0)
if (x.is_cuda and weight1.is_cuda and weight2.is_cuda and (bias1 is None or bias1.is_cuda)
and (bias2 is None or bias2.is_cuda) and dtype_eligible and dim_eligible):
return FusedMLPFunc.apply(
x, weight1, bias1, weight2, bias2, activation, save_pre_act, return_residual,
checkpoint_lvl, heuristic, process_group, sequence_parallel
)
else:
assert process_group is None
pre_act = F.linear(x, weight1, bias1)
activation_fn = (partial(F.gelu, approximate='tanh') if activation == 'gelu_approx'
else partial(F.relu, inplace=True))
output1 = activation_fn(pre_act)
output2 = F.linear(output1, weight2, bias2)
return output2 if not return_residual else (output2, x)
class FusedMLP(nn.Module):
def __init__(self, in_features, hidden_features, out_features=None, bias1=True,
bias2=True, activation='gelu_approx', return_residual=False,
checkpoint_lvl=0, heuristic='auto', device=None, dtype=None):
"""
If process_group is not None, we're doing Tensor Parallel with sequence parallelism:
we do an all_gather of x before doing the matmul, gelu, then matmul.
Finally we do a reduce_scatter of the output.
checkpoint_lvl (increasing lvl means slower but more memory saving):
0: no recomputation in the bwd
1: recompute gelu_out in the bwd
2: recompute pre_act and gelu_out in the bwd
heuristic:
-1: don't fuse gemm + gelu (separate kernel)
0..4: use this heuristic for the algo section in the fused gemm + gelu
'auto': heuristic will be picked automatically:
For CUDA >= 11.8, we set heuristic=0 for both fp16 and bf16 for best perf.
For CUDA <= 11.7, we set heuristic=1 for fp16 and heuristic=-1 for bf16.
For H100, we set heuristic=-1 for both fp16 and bf16 as the fused cuBlasLt implementation
is slower than the unfused version.
return_residual: whether to return the input x along with the output. This is for
performance reason: for post-norm architecture, returning the input allows us
to fuse the backward of nn.Linear with the residual connection.
"""
assert checkpoint_lvl in [0, 1, 2]
assert activation in ['gelu_approx', 'relu']
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
if out_features is None:
out_features = in_features
self.activation = activation
self.return_residual = return_residual
self.checkpoint_lvl = checkpoint_lvl
self.heuristic = heuristic
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1, **factory_kwargs)
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs)
def forward(self, x, process_group=None):
dtype = x.dtype if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype()
if self.heuristic == 'auto':
if self.activation == 'gelu_approx':
if torch.cuda.get_device_capability('cuda') == (9, 0):
heuristic = -1
else:
cuda_ver = tuple(map(int, torch.version.cuda.split('.')))
heuristic = 0 if cuda_ver >= (11, 8) else (1 if dtype == torch.float16 else -1)
else:
heuristic = 0
else:
heuristic = self.heuristic
out = fused_mlp_func(
x, self.fc1.weight, self.fc2.weight, self.fc1.bias, self.fc2.bias,
activation=self.activation, save_pre_act=self.training,
return_residual=self.return_residual, checkpoint_lvl=self.checkpoint_lvl,
heuristic=heuristic, process_group=process_group
)
if self.return_residual:
out, x = out
if process_group is not None:
out = reduce_scatter(out, process_group)
return out if not self.return_residual else (out, x)
class ParallelFusedMLP(nn.Module):
def __init__(self, in_features, hidden_features, out_features=None, activation='gelu_approx',
process_group: ProcessGroup = None, bias1=True, bias2=True,
sequence_parallel=True, checkpoint_lvl=0, heuristic='auto',
device=None, dtype=None):
"""
process_group is required. We're doing Tensor Parallel with sequence parallelism:
we do an all_gather of x before doing the matmul, gelu, then matmul.
Finally we do a reduce_scatter of the output.
checkpoint_lvl (increasing lvl means slower but more memory saving):
0: no recomputation in the bwd
1: recompute gelu_out in the bwd
2: recompute pre_act and gelu_out in the bwd
heuristic:
-1: don't fuse gemm + gelu (separate kernel)
0..4: use this heuristic for the algo section in the fused gemm + gelu
'auto': heuristic will be picked automatically:
For CUDA >= 11.8, we set heuristic=0 for both fp16 and bf16 for best perf.
For CUDA <= 11.7, we set heuristic=1 for fp16 and heuristic=-1 for bf16.
"""
assert checkpoint_lvl in [0, 1, 2]
assert activation in ['gelu_approx', 'relu']
assert process_group is not None
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
if out_features is None:
out_features = in_features
self.activation = activation
self.process_group = process_group
self.sequence_parallel = sequence_parallel
self.checkpoint_lvl = checkpoint_lvl
self.heuristic = heuristic
self.fc1 = ColumnParallelLinear(in_features, hidden_features, process_group,
bias=bias1, **factory_kwargs)
self.fc2 = RowParallelLinear(hidden_features, out_features, process_group,
bias=bias2, **factory_kwargs)
def forward(self, x):
dtype = x.dtype if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype()
if self.heuristic == 'auto':
if self.activation == 'gelu_approx':
cuda_ver = tuple(map(int, torch.version.cuda.split('.')))
heuristic = 0 if cuda_ver >= (11, 8) else (1 if dtype == torch.float16 else -1)
else:
heuristic = 0
else:
heuristic = self.heuristic
out = fused_mlp_func(
x, self.fc1.weight, self.fc2.weight, self.fc1.bias, self.fc2.bias,
activation=self.activation, save_pre_act=self.training,
checkpoint_lvl=self.checkpoint_lvl, heuristic=heuristic,
process_group=self.process_group,
sequence_parallel=self.sequence_parallel
)
reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce
return reduce_fn(out, self.process_group)