110 lines
4.3 KiB
Python
110 lines
4.3 KiB
Python
# Copyright (c) 2023, Tri Dao.
|
|
|
|
import math
|
|
import re
|
|
from collections import OrderedDict
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from transformers import GPT2Config, GPTJConfig
|
|
|
|
|
|
def remap_state_dict_hf_gptj(state_dict, config):
|
|
def key_mapping_layers(key):
|
|
return re.sub(r"^transformer.h.", "transformer.layers.", key)
|
|
|
|
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
|
|
# Word embedding
|
|
def key_mapping_emb(key):
|
|
return re.sub(r"^transformer.wte.", "transformer.embeddings.word_embeddings.", key)
|
|
|
|
state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
|
|
word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
|
|
# It's possible that vocab_size is padded to be a multiple of 8, for example.
|
|
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
|
vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
|
|
state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
|
|
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
|
|
)
|
|
if getattr(config, "tie_word_embeddings"):
|
|
state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
|
|
else:
|
|
output_embeddings = state_dict.pop("lm_head.weight")
|
|
# It's possible that vocab_size is padded to be a multiple of 8, for example.
|
|
state_dict["lm_head.weight"] = F.pad(
|
|
output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
|
|
)
|
|
output_embeddings_bias = state_dict.pop("lm_head.bias")
|
|
state_dict["lm_head.bias"] = F.pad(
|
|
output_embeddings_bias, (0, vocab_size - output_embeddings_bias.shape[0])
|
|
)
|
|
|
|
# LayerNorm
|
|
def key_mapping_ln(key):
|
|
return re.sub(r"^transformer.layers.(\d+).ln_1.", r"transformer.layers.\1.norm1.", key)
|
|
|
|
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
|
|
|
|
# MLP
|
|
def key_mapping_mlp(key):
|
|
key = re.sub(
|
|
r"^transformer.layers.(\d+).mlp.fc_in.", r"transformer.layers.\1.mlp.fc1.", key
|
|
)
|
|
key = re.sub(
|
|
r"^transformer.layers.(\d+).mlp.fc_out.", r"transformer.layers.\1.mlp.fc2.", key
|
|
)
|
|
return key
|
|
|
|
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
|
|
|
|
# Attention
|
|
for l in range(config.n_layer):
|
|
Wq = state_dict.pop(f"transformer.layers.{l}.attn.q_proj.weight")
|
|
Wk = state_dict.pop(f"transformer.layers.{l}.attn.k_proj.weight")
|
|
Wv = state_dict.pop(f"transformer.layers.{l}.attn.v_proj.weight")
|
|
state_dict[f"transformer.layers.{l}.mixer.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0)
|
|
# We don't store these biases
|
|
state_dict.pop(f"transformer.layers.{l}.attn.bias")
|
|
state_dict.pop(f"transformer.layers.{l}.attn.masked_bias")
|
|
|
|
def key_mapping_attn(key):
|
|
return re.sub(
|
|
r"^transformer.layers.(\d+).attn.out_proj.",
|
|
r"transformer.layers.\1.mixer.out_proj.",
|
|
key,
|
|
)
|
|
|
|
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
|
|
|
|
return state_dict
|
|
|
|
|
|
def gptj_config_to_gpt2_config(gptj_config: GPTJConfig) -> GPT2Config:
|
|
headdim = gptj_config.n_embd // gptj_config.n_head
|
|
return GPT2Config(
|
|
vocab_size=gptj_config.vocab_size,
|
|
n_positions=0, # No absolute position embedding
|
|
n_embd=gptj_config.n_embd,
|
|
n_layer=gptj_config.n_layer,
|
|
n_head=gptj_config.n_head,
|
|
n_inner=gptj_config.n_inner,
|
|
activation_function=gptj_config.activation_function,
|
|
resid_pdrop=gptj_config.resid_pdrop,
|
|
embd_pdrop=gptj_config.embd_pdrop,
|
|
attn_pdrop=gptj_config.attn_pdrop,
|
|
layer_norm_epsilon=gptj_config.layer_norm_epsilon,
|
|
initializer_range=gptj_config.initializer_range,
|
|
bos_token_id=gptj_config.bos_token_id,
|
|
eos_token_id=gptj_config.eos_token_id,
|
|
# These are new arguments not in the original GPT2Config
|
|
prenorm=True,
|
|
parallel_block=True,
|
|
parallel_block_tied_norm=True,
|
|
rotary_emb_fraction=gptj_config.rotary_dim / headdim,
|
|
rotary_emb_interleaved=True,
|
|
tie_word_embeddings=False,
|
|
qkv_proj_bias=False,
|
|
out_proj_bias=False,
|
|
lm_head_bias=True,
|
|
)
|