flash-attention/tests/losses/test_cross_entropy_parallel.py
2023-08-18 20:59:35 -07:00

77 lines
2.8 KiB
Python

# Run test with:
# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/losses/test_cross_entropy_parallel.py
import math
import pytest
import torch
import torch.nn.functional as F
from apex.transformer import parallel_state, tensor_parallel
from flash_attn.losses.cross_entropy import CrossEntropyLoss
is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8
@pytest.mark.parametrize(
"dtype", [torch.float16, torch.float32] + ([torch.bfloat16] if is_sm8x else [])
)
# @pytest.mark.parametrize('dtype', [torch.float16])
@pytest.mark.parametrize("inplace_backward", [False, True])
# @pytest.mark.parametrize('inplace_backward', [False])
@pytest.mark.parametrize("smoothing", [0.0, 0.9])
# @pytest.mark.parametrize('smoothing', [0.9])
@pytest.mark.parametrize("vocab_size", [50264])
@pytest.mark.parametrize("world_size", [1, 2, 4, 8])
# @pytest.mark.parametrize('world_size', [2])
def test_cross_entropy_loss_parallel(vocab_size, world_size, smoothing, inplace_backward, dtype):
assert vocab_size % world_size == 0
rtol, atol = (
(1e-5, 1e-6)
if dtype == torch.float32
else ((1e-3, 1e-4) if dtype == torch.float16 else (1e-2, 3e-3))
)
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="nccl", init_method="env://")
partition_vocab_size = vocab_size // world_size
device = f"cuda:{torch.distributed.get_rank()}"
assert world_size <= torch.distributed.get_world_size()
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
rank = parallel_state.get_tensor_model_parallel_rank()
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen = 128
x_pt = (
torch.randn(batch_size * seqlen, vocab_size, device=device, dtype=dtype) * 10
).requires_grad_()
x = (
tensor_parallel.scatter_to_tensor_model_parallel_region(x_pt)
.detach()
.clone()
.requires_grad_()
)
y = torch.randint(0, vocab_size, (batch_size * seqlen,), dtype=torch.long, device=device)
y[torch.randperm(batch_size * seqlen)[:10]] = -100
model_pt = torch.nn.CrossEntropyLoss(label_smoothing=smoothing, reduction="none")
model = CrossEntropyLoss(
label_smoothing=smoothing,
reduction="none",
inplace_backward=inplace_backward,
process_group=parallel_state.get_tensor_model_parallel_group(),
)
out = model(x, y)
out_pt = model_pt(x_pt.float(), y)
assert torch.allclose(out, out_pt, rtol=1e-5, atol=1e-6)
g = torch.randn_like(out)
out_pt.backward(g)
out.backward(g)
assert torch.allclose(
x.grad,
x_pt.grad[:, (rank * partition_vocab_size) : (rank + 1) * partition_vocab_size],
rtol=rtol,
atol=atol,
)
parallel_state.destroy_model_parallel()