flash-attention/tests/models/test_gpt_generation_cg.py
2023-08-18 20:59:35 -07:00

90 lines
3.2 KiB
Python

import os
import re
import time
import pytest
import torch
from einops import rearrange
from flash_attn.models.gpt import GPTLMHeadModel
from flash_attn.utils.generation import update_graph_cache
from transformers import GPT2Config
def get_logits(model, input_ids, max_length, teacher_outputs=None, **kwargs):
out = model.generate(
input_ids=input_ids,
max_length=max_length,
fused_ft_kernel=True,
teacher_outputs=teacher_outputs,
return_dict_in_generate=True,
output_scores=True,
timing=True,
**kwargs,
)
return torch.stack(out.scores, dim=1)
@pytest.mark.parametrize("seqlen,maxlen", [(10, 20), (30, 150), (3000, 3400), (14000, 15000)])
# @pytest.mark.parametrize('seqlen,maxlen', [(10, 20)])
@pytest.mark.parametrize("rotary", [None, "interleaved", "block"])
# @pytest.mark.parametrize('rotary', [None])
@pytest.mark.parametrize("model_name", ["gpt2"])
def test_greedy_decode_gpt2_cg(model_name, rotary, seqlen, maxlen):
"""Check that decoding with CUDA graph is the same as decoding without CUDA graph."""
dtype = torch.float16
device = "cuda"
rtol, atol = 3e-3, 3e-1
config = GPT2Config.from_pretrained(model_name)
config.n_positions = 16 * 1024
assert seqlen <= maxlen <= config.n_positions
if rotary is not None:
config.n_positions = 0
config.rotary_emb_dim = 32
config.rotary_emb_interleaved = rotary == "interleaved"
config.residual_in_fp32 = True
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = True
config.fused_dropout_add_ln = True
model = GPTLMHeadModel(config, device=device, dtype=dtype)
model.eval()
torch.manual_seed(0)
batch_size = 1
input_ids = torch.randint(
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
)
teacher_outputs = torch.randint(
0, config.vocab_size, (batch_size, maxlen), dtype=torch.long, device=device
)
logits = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs)
logits_cg = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs, cg=True)
assert torch.equal(logits, logits_cg)
# Try increasing batch size and seqlen, then decrease them to see if it's still correct
batch_size = 3
maxlen += 30
input_ids = torch.randint(
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
)
teacher_outputs = torch.randint(
0, config.vocab_size, (batch_size, maxlen), dtype=torch.long, device=device
)
logits = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs)
logits_cg = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs, cg=True)
assert torch.equal(logits, logits_cg)
batch_size = 2
maxlen -= 35
input_ids = torch.randint(
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
)
teacher_outputs = torch.randint(
0, config.vocab_size, (batch_size, maxlen), dtype=torch.long, device=device
)
logits = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs)
logits_cg = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs, cg=True)
assert torch.equal(logits, logits_cg)