flash-attention/flash_attn/losses/cross_entropy.py
2023-08-18 14:22:11 -07:00

149 lines
6.5 KiB
Python

# Inspired by https://github.com/NVIDIA/apex/blob/master/apex/transformer/tensor_parallel/cross_entropy.py
# But we make it much faster: we compute the local loss and the LSE, and by exchanging the LSE and
# the losses we can get the global loss. There's no need to do it step by step
# (compute local max, exchange, compute exp, compute local sum, exchange, etc.)
# The original xentropy interface is here: https://github.com/NVIDIA/apex/blob/master/apex/contrib/xentropy/softmax_xentropy.py
import torch
import torch.nn as nn
import xentropy_cuda_lib
# `all_gather_into_tensor` and `reduce_scatter_tensor` are new placeholders for
# `_all_gather_base` and `_reduce_scatter_base`. They require the most recent
# version of PyTorch. The following 2 lines are for backward compatibility with
# older PyTorch.
if "all_gather_into_tensor" not in dir(torch.distributed):
torch.distributed.all_gather_into_tensor = torch.distributed._all_gather_base
class SoftmaxCrossEntropyLossFn(torch.autograd.Function):
@staticmethod
def forward(
ctx,
logits,
labels,
smoothing=0.0,
ignored_index=-100,
inplace_backward=False,
process_group=None,
):
"""
logits: (batch, vocab_size)
labels: (batch,)
If process_group is not None, we're doing Tensor Parallel: each process is responsible for
one part of the vocab. The loss needs to be aggregated across processes.
"""
batch, vocab_size = logits.shape
assert labels.shape == (batch,)
world_size = 1 if process_group is None else torch.distributed.get_world_size(process_group)
ctx.total_classes = world_size * vocab_size
if world_size == 1:
losses, lse = xentropy_cuda_lib.forward(logits, labels, smoothing)
losses.masked_fill_(labels == ignored_index, 0)
labels_local = labels
else:
rank = torch.distributed.get_rank(process_group)
vocab_start_index, vocab_end_index = rank * vocab_size, (rank + 1) * vocab_size
# Create a mask of valid vocab ids (1 means it needs to be masked).
labels_mask = (labels < vocab_start_index) | (labels >= vocab_end_index)
ignored_mask = labels == ignored_index
labels_local = torch.where(ignored_mask, labels, labels - vocab_start_index)
# For tensor parallel cross entropy with smoothing, we want to pass in the total number
# of classes so that smoothing can be applied correctly. If total_classes=-1, use the
# last dimension of the input tensor.
losses, lse_local = xentropy_cuda_lib.forward(
logits, labels_local, smoothing, world_size * vocab_size
)
assert lse_local.shape == (batch,)
assert losses.shape == (batch,)
losses.masked_fill_(ignored_mask, 0)
# For labels == ignored_index, the loss is always 0.
# If there's no smoothing, if labels are in the vocab of this partition, losses contains
# lse_local - predicted logit, and 0 otherwise.
# If there's smoothing=0.1, for labels in the vocab of this partition, losses contains
# 0.9 * (lse_local - predicted logit) + 0.1 * (lse_local - sum logit / total_classes)
# For labels not in the vocab of this partition, losses contains
# 0.1 * (lse_local - sum logit / total_classes).
lse_allgather = torch.empty(
world_size, batch, dtype=lse_local.dtype, device=lse_local.device
)
torch.distributed.all_gather_into_tensor(
lse_allgather, lse_local.contiguous(), group=process_group
)
handle_losses = torch.distributed.all_reduce(
losses, op=torch.distributed.ReduceOp.SUM, group=process_group, async_op=True
)
lse = torch.logsumexp(lse_allgather, dim=0)
# If there's no smoothing, the total losses are lse_local - predicted_logit,
# we just have to subtract the lse_local and add the lse (global).
# If there's smoothing=0.1, the total losses are
# 0.9 * (lse_local - predicted_logit) + 0.1 * (sum of all lse_local - sum logit / total_classes)
# We want 0.9 * (lse - predicted_logit) + 0.1 * (lse - sum logit / total_classes).
rank_per_sample = torch.div(labels, vocab_size, rounding_mode="floor")
lse_local = lse_allgather[
rank_per_sample, torch.arange(batch, device=lse_allgather.device)
]
handle_losses.wait()
if smoothing == 0.0:
losses += lse - lse_local
else:
losses += (1 - smoothing) * (lse - lse_local) + smoothing * (
lse - lse_allgather.sum(dim=0)
)
losses.masked_fill_(ignored_mask, 0)
ctx.save_for_backward(logits, lse, labels_local)
ctx.smoothing = smoothing
ctx.ignored_index = ignored_index
ctx.inplace_backward = inplace_backward
return losses
@staticmethod
def backward(ctx, grad_loss):
logits, lse, labels = ctx.saved_tensors
grad_loss = grad_loss.contiguous()
grad_loss.masked_fill_(labels == ctx.ignored_index, 0)
grad_logits = xentropy_cuda_lib.backward(
grad_loss, logits, lse, labels, ctx.smoothing, ctx.inplace_backward, ctx.total_classes
)
return grad_logits, None, None, None, None, None, None
class CrossEntropyLoss(nn.Module):
def __init__(
self,
ignore_index=-100,
reduction="mean",
label_smoothing=0.0,
inplace_backward=False,
process_group=None,
):
super().__init__()
if reduction not in ["mean", "none"]:
raise NotImplementedError("Only support reduction = 'mean' or 'none'")
self.ignore_index = ignore_index
self.reduction = reduction
self.label_smoothing = label_smoothing
self.inplace_backward = inplace_backward
self.process_group = process_group
def forward(self, input, target):
assert input.is_cuda and target.is_cuda
# SoftmaxCrossEntropyLoss implicitly casts to float
loss = SoftmaxCrossEntropyLossFn.apply(
input,
target,
self.label_smoothing,
self.ignore_index,
self.inplace_backward,
self.process_group,
)
if self.reduction == "mean":
return loss.sum() / (target != self.ignore_index).sum()
else:
return loss