117 lines
5.0 KiB
Python
117 lines
5.0 KiB
Python
# Copyright (c) 2023, Tri Dao.
|
|
|
|
import math
|
|
import re
|
|
from collections import OrderedDict
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from transformers import GPT2Config, OPTConfig
|
|
|
|
|
|
def remap_state_dict_hf_opt(state_dict, config):
|
|
def key_mapping_model(key):
|
|
key = re.sub(r"^model.decoder.", "transformer.", key)
|
|
# The OPT-350m model uses '^decoder' instead of '^model.decoder'
|
|
key = re.sub(r"^decoder.", "transformer.", key)
|
|
return key
|
|
|
|
state_dict = OrderedDict((key_mapping_model(k), v) for k, v in state_dict.items())
|
|
# Word embedding and position embedding
|
|
def key_mapping_emb(key):
|
|
key = re.sub(r"^transformer.embed_tokens.", "transformer.embeddings.word_embeddings.", key)
|
|
# The OPT-350m model uses has project_in and project_out
|
|
key = re.sub(r"^transformer.project_in.", "transformer.embeddings.project_in.", key)
|
|
key = re.sub(r"^transformer.project_out.", "project_out.", key)
|
|
key = re.sub(
|
|
r"^transformer.embed_positions.", "transformer.embeddings.position_embeddings.", key
|
|
)
|
|
return key
|
|
|
|
state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
|
|
# OPT uses the first 2 indices of pos_emb for padding tokens
|
|
pos_embeddings = state_dict.pop("transformer.embeddings.position_embeddings.weight")
|
|
state_dict["transformer.embeddings.position_embeddings.weight"] = pos_embeddings[2:]
|
|
word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
|
|
# It's possible that vocab_size is padded to be a multiple of 8, for example.
|
|
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
|
vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
|
|
state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
|
|
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
|
|
)
|
|
state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
|
|
|
|
# LayerNorm
|
|
def key_mapping_ln(key):
|
|
key = re.sub(r"^transformer.final_layer_norm.", r"transformer.ln_f.", key)
|
|
# The OPT-175B checkpoint calls this 'decoder.layer_norm' instead of 'decoder.final_layer_norm'
|
|
key = re.sub(r"^transformer.layer_norm.", r"transformer.ln_f.", key)
|
|
key = re.sub(
|
|
r"^transformer.layers.(\d+).self_attn_layer_norm.", r"transformer.layers.\1.norm1.", key
|
|
)
|
|
key = re.sub(
|
|
r"^transformer.layers.(\d+).final_layer_norm.", r"transformer.layers.\1.norm2.", key
|
|
)
|
|
return key
|
|
|
|
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
|
|
|
|
# MLP
|
|
def key_mapping_mlp(key):
|
|
return re.sub(
|
|
r"^transformer.layers.(\d+).fc(1|2).", r"transformer.layers.\1.mlp.fc\2.", key
|
|
)
|
|
|
|
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
|
|
|
|
# Attention
|
|
for l in range(config.n_layer):
|
|
Wq = state_dict.pop(f"transformer.layers.{l}.self_attn.q_proj.weight")
|
|
Wk = state_dict.pop(f"transformer.layers.{l}.self_attn.k_proj.weight")
|
|
Wv = state_dict.pop(f"transformer.layers.{l}.self_attn.v_proj.weight")
|
|
bq = state_dict.pop(f"transformer.layers.{l}.self_attn.q_proj.bias")
|
|
bk = state_dict.pop(f"transformer.layers.{l}.self_attn.k_proj.bias")
|
|
bv = state_dict.pop(f"transformer.layers.{l}.self_attn.v_proj.bias")
|
|
state_dict[f"transformer.layers.{l}.mixer.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0)
|
|
state_dict[f"transformer.layers.{l}.mixer.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0)
|
|
|
|
def key_mapping_attn(key):
|
|
return re.sub(
|
|
r"^transformer.layers.(\d+).self_attn.out_proj.",
|
|
r"transformer.layers.\1.mixer.out_proj.",
|
|
key,
|
|
)
|
|
|
|
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
|
|
|
|
return state_dict
|
|
|
|
|
|
def opt_config_to_gpt2_config(opt_config: OPTConfig) -> GPT2Config:
|
|
assert opt_config.layerdrop == 0.0
|
|
assert opt_config.layer_norm_elementwise_affine
|
|
word_embed_proj_dim = (
|
|
None
|
|
if opt_config.word_embed_proj_dim == opt_config.hidden_size
|
|
else opt_config.word_embed_proj_dim
|
|
)
|
|
return GPT2Config(
|
|
vocab_size=opt_config.vocab_size,
|
|
n_positions=opt_config.max_position_embeddings,
|
|
n_embd=opt_config.hidden_size,
|
|
n_layer=opt_config.num_hidden_layers,
|
|
n_head=opt_config.num_attention_heads,
|
|
n_inner=opt_config.ffn_dim,
|
|
activation_function=opt_config.activation_function,
|
|
resid_pdrop=opt_config.dropout,
|
|
# HF's implementation of OPT doesn't seem to have embedding dropout
|
|
embd_pdrop=opt_config.dropout,
|
|
attn_pdrop=opt_config.attention_dropout,
|
|
initializer_range=opt_config.init_std,
|
|
bos_token_id=opt_config.bos_token_id,
|
|
eos_token_id=opt_config.eos_token_id,
|
|
# These are new arguments not in the original GPT2Config
|
|
prenorm=opt_config.do_layer_norm_before,
|
|
word_embed_proj_dim=word_embed_proj_dim,
|
|
)
|