flash-attention/csrc/fused_dense_lib/fused_dense.cpp

357 lines
15 KiB
C++

// Adapted from https://github.com/NVIDIA/apex/blob/master/csrc/fused_dense.cpp
// We make it work for bfloat16
#include <torch/extension.h>
#include <torch/torch.h>
#include <vector>
#include <stdio.h>
// https://github.com/NVIDIA/apex/blob/master/csrc/type_shim.h
// #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
#define DISPATCH_HALF_AND_BF16(TYPE, NAME, ...) \
switch (TYPE) { \
case at::ScalarType::Half: { \
using scalar_t = at::Half; \
__VA_ARGS__(); \
break; \
} \
case at::ScalarType::BFloat16: { \
using scalar_t = at::BFloat16; \
__VA_ARGS__(); \
break; \
} \
default: \
AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
}
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
template <typename T>
int linear_bias_forward_cuda(at::Tensor input, T *weight, at::Tensor bias, int in_features, int batch_size, int out_features, at::Tensor output, void *lt_workspace);
template <typename T>
int linear_bias_backward_cuda(T *input, T *weight, T *d_output, int in_features, int batch_size, int out_features, T *d_weight, T *d_bias, T *d_input, bool residual, void *lt_workspace);
template <typename T>
int linear_bias_wgrad_cuda(T *input, T *d_output, int in_features, int batch_size, int out_features, T *d_weight, T *d_bias, void *lt_workspace);
template <typename T>
int linear_gelu_forward_cuda(T *input, T *weight, T *bias, int in_features, int batch_size, int out_features, int heuristic, T *output, T *gelu_in, void *lt_workspace) ;
template <typename T>
int linear_gelu_linear_backward_cuda(T *input, T *gelu_in, T *output1, T *weight1, T *weight2, T *d_output1, T *d_output2, int in_features, int batch_size, int hidden_features, int out_features, int heuristic, T *d_weight1, T *d_weight2, T *d_bias1, T *d_bias2, T *d_input, bool residual, void *lt_workspace);
at::Tensor linear_bias_forward(at::Tensor input, at::Tensor weight, at::Tensor bias) {
auto batch_size = input.size(0);
auto in_features = input.size(1);
int out_features = weight.size(0);
//auto reserved_size = get_mlp_reserved_space(batch_size, num_layers, output_features.data());
// create output/workspace tensor
auto out = at::empty({batch_size, out_features}, at::dtype(input.dtype()).device(input.device()));
//auto reserved_space = at::empty({reserved_size}, inputs[0].type());
// allocate fixed 4MB workspace for cublaslt for now, and this gets at least 4 MB
auto lt_workspace = at::empty({1 << 22}, at::dtype(input.dtype()).device(input.device()));
DISPATCH_HALF_AND_BF16(input.scalar_type(), "linear_bias_forward", [&] {
scalar_t* w_ptr = weight.data_ptr<scalar_t>();
auto result = linear_bias_forward_cuda<scalar_t>(
input,
w_ptr,
bias,
in_features,
batch_size,
out_features,
out,
//out.data_ptr<scalar_t>(),
// reserved_space.data_ptr<scalar_t>(),
(void*) (lt_workspace.data_ptr<scalar_t>()));
TORCH_CHECK(result == 0, "linear_bias_forward failed.")
});
return {out};
}
std::vector<at::Tensor> linear_bias_backward(at::Tensor input, at::Tensor weight, at::Tensor d_output) {
auto batch_size = input.size(0);
auto in_features = input.size(1);
int out_features = weight.size(0);
//auto reserved_size = get_mlp_reserved_space(batch_size, num_layers, output_features.data());
// create output/workspace tensor
auto opts = input.options();
auto d_weight = at::empty({out_features, in_features}, opts);
#if defined(CUBLAS_VERSION) && CUBLAS_VERSION < 11600
auto d_bias = d_output.view({-1, out_features}).sum(0, false);
#else
auto d_bias = at::empty({out_features}, opts);
#endif
auto d_input = at::empty({batch_size, in_features}, opts);
//auto reserved_space = at::empty({reserved_size}, inputs[0].type());
// allocate fixed 4MB workspace for cublaslt for now, and this gets at least 4 MB
auto lt_workspace = at::empty({1 << 22}, opts);
DISPATCH_HALF_AND_BF16(input.scalar_type(), "linear_bias_backward", [&] {
scalar_t* w_ptr = weight.data_ptr<scalar_t>();
auto result = linear_bias_backward_cuda<scalar_t>(
input.data_ptr<scalar_t>(),
w_ptr,
d_output.data_ptr<scalar_t>(),
in_features,
batch_size,
out_features,
d_weight.data_ptr<scalar_t>(),
d_bias.data_ptr<scalar_t>(),
d_input.data_ptr<scalar_t>(),
// reserved_space.data_ptr<scalar_t>(),
/*residual=*/false,
(void*) (lt_workspace.data_ptr<scalar_t>()));
TORCH_CHECK(result == 0, "linear_bias_backward failed.")
});
return {d_input, d_weight, d_bias};
}
std::vector<at::Tensor> linear_bias_wgrad(at::Tensor input, at::Tensor d_output) {
auto batch_size = input.size(0);
auto in_features = input.size(1);
int out_features = d_output.size(1);
//auto reserved_size = get_mlp_reserved_space(batch_size, num_layers, output_features.data());
// create output/workspace tensor
auto opts = input.options();
auto d_weight = at::empty({out_features, in_features}, opts);
#if defined(CUBLAS_VERSION) && CUBLAS_VERSION < 11600
auto d_bias = d_output.view({-1, out_features}).sum(0, false);
#else
auto d_bias = at::empty({out_features}, opts);
#endif
//auto reserved_space = at::empty({reserved_size}, inputs[0].type());
// allocate fixed 4MB workspace for cublaslt for now, and this gets at least 4 MB
auto lt_workspace = at::empty({1 << 22}, opts);
DISPATCH_HALF_AND_BF16(input.scalar_type(), "linear_bias_wgrad", [&] {
auto result = linear_bias_wgrad_cuda<scalar_t>(
input.data_ptr<scalar_t>(),
d_output.data_ptr<scalar_t>(),
in_features,
batch_size,
out_features,
d_weight.data_ptr<scalar_t>(),
d_bias.data_ptr<scalar_t>(),
// reserved_space.data_ptr<scalar_t>(),
(void*) (lt_workspace.data_ptr<scalar_t>()));
TORCH_CHECK(result == 0, "linear_bias_wgrad failed.")
});
return {d_weight, d_bias};
}
std::vector<at::Tensor> linear_bias_residual_backward(at::Tensor input, at::Tensor weight, at::Tensor d_output, at::Tensor d_input) {
auto batch_size = input.size(0);
auto in_features = input.size(1);
int out_features = weight.size(0);
//auto reserved_size = get_mlp_reserved_space(batch_size, num_layers, output_features.data());
// create output/workspace tensor
auto opts = input.options();
auto d_weight = at::empty({out_features, in_features}, opts);
#if defined(CUBLAS_VERSION) && CUBLAS_VERSION < 11600
auto d_bias = d_output.view({-1, out_features}).sum(0, false);
#else
auto d_bias = at::empty({out_features}, opts);
#endif
CHECK_SHAPE(d_input, batch_size, in_features);
//auto reserved_space = at::empty({reserved_size}, inputs[0].type());
// allocate fixed 4MB workspace for cublaslt for now, and this gets at least 4 MB
auto lt_workspace = at::empty({1 << 22}, opts);
DISPATCH_HALF_AND_BF16(input.scalar_type(), "linear_bias_backward", [&] {
scalar_t* w_ptr = weight.data_ptr<scalar_t>();
auto result = linear_bias_backward_cuda<scalar_t>(
input.data_ptr<scalar_t>(),
w_ptr,
d_output.data_ptr<scalar_t>(),
in_features,
batch_size,
out_features,
d_weight.data_ptr<scalar_t>(),
d_bias.data_ptr<scalar_t>(),
d_input.data_ptr<scalar_t>(),
// reserved_space.data_ptr<scalar_t>(),
/*residual=*/true,
(void*) (lt_workspace.data_ptr<scalar_t>()));
TORCH_CHECK(result == 0, "linear_bias_residual_backward failed.")
});
return {d_input, d_weight, d_bias};
}
std::vector<at::Tensor> linear_gelu_forward(at::Tensor input, at::Tensor weight, at::Tensor bias,
bool save_gelu_in, int heuristic) {
auto batch_size = input.size(0);
auto in_features = input.size(1);
int out_features = weight.size(0);
//auto reserved_size = get_mlp_reserved_space(batch_size, num_layers, output_features.data());
// create output/workspace tensor
auto opts = input.options();
auto output = at::empty({batch_size, out_features}, opts);
at::Tensor gelu_in;
if (save_gelu_in) { gelu_in = at::empty({batch_size, out_features}, opts); }
//auto reserved_space = at::empty({reserved_size}, inputs[0].type());
// allocate fixed 4MB workspace for cublaslt for now, and this gets at least 4 MB
auto lt_workspace = at::empty({1 << 22}, opts);
DISPATCH_HALF_AND_BF16(input.scalar_type(), "linear_gelu_forward", [&] {
scalar_t* w_ptr = weight.data_ptr<scalar_t>();
scalar_t* b_ptr = bias.data_ptr<scalar_t>();
auto result = linear_gelu_forward_cuda<scalar_t>(
input.data_ptr<scalar_t>(),
w_ptr,
b_ptr,
in_features,
batch_size,
out_features,
heuristic,
output.data_ptr<scalar_t>(),
save_gelu_in ? gelu_in.data_ptr<scalar_t>() : nullptr,
// reserved_space.data_ptr<scalar_t>(),
(void*) (lt_workspace.data_ptr<scalar_t>()));
TORCH_CHECK(result == 0, "linear_gelu_forward failed.")
});
std::vector<at::Tensor> result = {output};
if (save_gelu_in) { result.push_back(gelu_in); };
return result;
}
std::vector<at::Tensor> linear_gelu_linear_backward(at::Tensor input, at::Tensor gelu_in, at::Tensor output1, at::Tensor weight1, at::Tensor weight2, at::Tensor d_output2, int heuristic) {
auto batch_size = input.size(0);
auto in_features = input.size(1);
int hidden_features = weight1.size(0);
int out_features = weight2.size(0);
//auto reserved_size = get_mlp_reserved_space(batch_size, num_layers, output_features.data());
// create output/workspace tensor
auto opts = input.options();
auto d_weight1 = at::empty({hidden_features, in_features}, opts);
auto d_weight2 = at::empty({out_features, hidden_features}, opts);
auto d_bias1 = at::empty({hidden_features}, opts);
auto d_bias2 = at::empty({out_features}, opts);
auto d_input = at::empty({batch_size, in_features}, opts);
auto d_output1 = at::empty({batch_size, hidden_features}, opts);
//auto reserved_space = at::empty({reserved_size}, inputs[0].type());
// allocate fixed 4MB workspace for cublaslt for now, and this gets at least 4 MB
auto lt_workspace = at::empty({1 << 22}, opts);
DISPATCH_HALF_AND_BF16(input.scalar_type(), "linear_bias_backward", [&] {
//scalar_t* w_ptr = weight.data_ptr<scalar_t>();
//scalar_t* d_b_ptr = d_bias.data_ptr<scalar_t>();
auto result = linear_gelu_linear_backward_cuda<scalar_t>(
input.data_ptr<scalar_t>(),
gelu_in.data_ptr<scalar_t>(),
output1.data_ptr<scalar_t>(),
weight1.data_ptr<scalar_t>(),
weight2.data_ptr<scalar_t>(),
d_output1.data_ptr<scalar_t>(),
d_output2.data_ptr<scalar_t>(),
in_features,
batch_size,
hidden_features,
out_features,
heuristic,
d_weight1.data_ptr<scalar_t>(),
d_weight2.data_ptr<scalar_t>(),
d_bias1.data_ptr<scalar_t>(),
d_bias2.data_ptr<scalar_t>(),
d_input.data_ptr<scalar_t>(),
// reserved_space.data_ptr<scalar_t>(),
/*residual=*/false,
(void*) (lt_workspace.data_ptr<scalar_t>()));
TORCH_CHECK(result == 0, "linear_gelu_linear_backward failed.")
});
return {d_input, d_weight1, d_bias1, d_weight2, d_bias2};
}
std::vector<at::Tensor> linear_residual_gelu_linear_backward(at::Tensor input, at::Tensor gelu_in, at::Tensor output1, at::Tensor weight1, at::Tensor weight2, at::Tensor d_output2, at::Tensor d_input, int heuristic) {
auto batch_size = input.size(0);
auto in_features = input.size(1);
int hidden_features = weight1.size(0);
int out_features = weight2.size(0);
//auto reserved_size = get_mlp_reserved_space(batch_size, num_layers, output_features.data());
// create output/workspace tensor
auto opts = input.options();
auto d_weight1 = at::empty({hidden_features, in_features}, opts);
auto d_weight2 = at::empty({out_features, hidden_features}, opts);
auto d_bias1 = at::empty({hidden_features}, opts);
auto d_bias2 = at::empty({out_features}, opts);
CHECK_SHAPE(d_input, batch_size, in_features);
auto d_output1 = at::empty({batch_size, hidden_features}, opts);
//auto reserved_space = at::empty({reserved_size}, inputs[0].type());
// allocate fixed 4MB workspace for cublaslt for now, and this gets at least 4 MB
auto lt_workspace = at::empty({1 << 22}, opts);
DISPATCH_HALF_AND_BF16(input.scalar_type(), "linear_bias_backward", [&] {
//scalar_t* w_ptr = weight.data_ptr<scalar_t>();
//scalar_t* d_b_ptr = d_bias.data_ptr<scalar_t>();
auto result = linear_gelu_linear_backward_cuda<scalar_t>(
input.data_ptr<scalar_t>(),
gelu_in.data_ptr<scalar_t>(),
output1.data_ptr<scalar_t>(),
weight1.data_ptr<scalar_t>(),
weight2.data_ptr<scalar_t>(),
d_output1.data_ptr<scalar_t>(),
d_output2.data_ptr<scalar_t>(),
in_features,
batch_size,
hidden_features,
out_features,
heuristic,
d_weight1.data_ptr<scalar_t>(),
d_weight2.data_ptr<scalar_t>(),
d_bias1.data_ptr<scalar_t>(),
d_bias2.data_ptr<scalar_t>(),
d_input.data_ptr<scalar_t>(),
// reserved_space.data_ptr<scalar_t>(),
/*residual=*/true,
(void*) (lt_workspace.data_ptr<scalar_t>()));
TORCH_CHECK(result == 0, "linear_residual_gelu_linear_backward failed.")
});
return {d_input, d_weight1, d_bias1, d_weight2, d_bias2};
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("linear_bias_forward", &linear_bias_forward, "linear bias forward");
m.def("linear_bias_backward", &linear_bias_backward, "linear bias backward");
m.def("linear_bias_wgrad", &linear_bias_wgrad, "linear bias wgrad");
m.def("linear_bias_residual_backward", &linear_bias_residual_backward, "linear bias residual backward");
m.def("linear_gelu_forward", &linear_gelu_forward, "linear gelu forward");
m.def("linear_gelu_linear_backward", &linear_gelu_linear_backward, "linear gelu linear backward");
m.def("linear_residual_gelu_linear_backward", &linear_residual_gelu_linear_backward, "linear residual gelu linear backward");
}