flash-attention/tests/ops/test_dropout_layer_norm.py

268 lines
14 KiB
Python

import math
import torch
import torch.nn.functional as F
import pytest
from einops import rearrange
from flash_attn.ops.layer_norm import DropoutAddLayerNorm, dropout_add_layer_norm
is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8
@pytest.mark.parametrize('has_rowscale', [True, False])
# @pytest.mark.parametrize('has_rowscale', [True])
@pytest.mark.parametrize('has_residual', [True, False])
# @pytest.mark.parametrize('has_residual', [False])
@pytest.mark.parametrize('dropout_p', [0.37, 0.0])
# @pytest.mark.parametrize('dropout_p', [0.0])
@pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16])
# @pytest.mark.parametrize('weight_dtype', [torch.float32])
@pytest.mark.parametrize('input_dtype,residual_dtype',
[(torch.float16, torch.float16), (torch.float16, torch.float32),
(torch.float32, torch.float32)]
+ ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []))
# @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float16, torch.float32)])
@pytest.mark.parametrize('hidden_size', [768, 1024, 1280, 1536, 1600, 2048, 2560, 3072, 4096, 5120])
# @pytest.mark.parametrize('hidden_size', [768])
def test_dropout_layer_norm_training(hidden_size, input_dtype, residual_dtype, weight_dtype,
dropout_p, has_residual, has_rowscale):
if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
pytest.skip() # Not supported
# Backward numerical error is high, and this case isn't used
if has_rowscale and not has_residual:
pytest.skip()
device = 'cuda'
# rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4)
rtol, atol = (1e-3, 1e-4)
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen = 512
x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype,
requires_grad=True)
x0 = x0_pt.detach().clone().requires_grad_()
x0_ref = x0_pt.detach().clone().float().requires_grad_()
if has_residual:
x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
x1 = x1_pt.detach().clone().requires_grad_()
x1_ref = x1_pt.detach().clone().float().requires_grad_()
else:
x1 = None
if has_rowscale:
rowscale = torch.empty(batch_size, seqlen, device=device, dtype=input_dtype)
survival_rate = 0.87
rowscale = rowscale.bernoulli_(survival_rate) / survival_rate
x0_scaled_pt = x0_pt * rearrange(rowscale, '... -> ... 1')
x0_scaled_ref = x0_ref * rearrange(rowscale, '... -> ... 1')
else:
rowscale = None
x0_scaled_pt = x0_pt
x0_scaled_ref = x0_ref
model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype)
torch.nn.init.normal_(model_pt.weight)
torch.nn.init.normal_(model_pt.bias)
model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32)
model = DropoutAddLayerNorm(hidden_size, p=dropout_p, device=device, dtype=weight_dtype)
with torch.no_grad():
model.weight.copy_(model_pt.weight)
model.bias.copy_(model_pt.bias)
model_ref.weight.copy_(model_pt.weight)
model_ref.bias.copy_(model_pt.bias)
residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
out, dmask = dropout_add_layer_norm(x0, x1, model.weight, model.bias, model.p,
model.epsilon, rowscale=rowscale,
residual_in_fp32=residual_in_fp32, return_dropout_mask=True)
assert out.dtype == input_dtype
print(f'Actual dropout fraction: {1 - dmask.float().mean().item()}')
if has_residual:
residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p) + x1_pt.float()).to(dtype=residual_dtype)
residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p) + x1_ref
else:
residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p)).to(dtype=residual_dtype)
residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p)
out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(dtype=input_dtype)
out_ref = model_ref(residual_ref)
assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4
g = torch.randn_like(out) / batch_size
out_pt.backward(g)
out.backward(g)
out_ref.backward(g)
assert (x0.grad - x0_ref.grad).abs().max() <= 4 * (x0_pt.grad - x0_ref.grad).abs().max() + 1e-4
if has_residual:
assert (x1.grad - x1_ref.grad).abs().max() <= 4 * (x1_pt.grad - x1_ref.grad).abs().max() + 1e-4
assert (model.weight.grad - model_ref.weight.grad).abs().max() <= 2 * (model_pt.weight.grad - model_ref.weight.grad).abs().max() + 3e-5
assert (model.bias.grad - model_ref.bias.grad).abs().max() <= 2 * (model_pt.bias.grad - model_ref.bias.grad).abs().max() + 3e-5
@pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16])
@pytest.mark.parametrize('input_dtype,residual_dtype',
[(torch.float16, torch.float16), (torch.float16, torch.float32),
(torch.float32, torch.float32)]
+ ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []))
@pytest.mark.parametrize('hidden_size', [768, 1024, 1280, 1536, 1600, 2048, 2560, 3072, 4096, 5120])
def test_dropout_layer_norm_eval(hidden_size, input_dtype, residual_dtype, weight_dtype):
if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
pytest.skip() # Not supported
device = 'cuda'
# rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4)
rtol, atol = (1e-3, 1e-4)
dropout_p = 0.37
# set seed
torch.random.manual_seed(0)
batch_size = 32
seqlen = 512
x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype,
requires_grad=True)
x0 = x0_pt.detach().clone().requires_grad_()
x0_ref = x0_pt.detach().clone().float().requires_grad_()
x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
x1 = x1_pt.detach().clone().requires_grad_()
x1_ref = x1_pt.detach().clone().float().requires_grad_()
model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype)
model = DropoutAddLayerNorm(hidden_size, p=dropout_p, device=device, dtype=weight_dtype)
model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32)
with torch.no_grad():
model.weight.copy_(model_pt.weight)
model.bias.copy_(model_pt.bias)
model_ref.weight.copy_(model_pt.weight)
model_ref.bias.copy_(model_pt.bias)
model_pt.eval()
model.eval()
model_ref.eval()
out = model(x0, x1)
residual_pt = (x0_pt.float() + x1_pt.float()).to(dtype=residual_dtype)
residual_ref = x0_ref + x1_ref
out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(input_dtype)
out_ref = model_ref(residual_ref)
assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4
@pytest.mark.parametrize('has_rowscale', [True, False])
@pytest.mark.parametrize('has_residual', [True, False])
@pytest.mark.parametrize('dropout_p', [0.37, 0.0])
@pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16])
@pytest.mark.parametrize('input_dtype,residual_dtype',
[(torch.float16, torch.float16), (torch.float16, torch.float32),
(torch.float32, torch.float32)]
+ ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []))
@pytest.mark.parametrize('hidden_size', [768, 1024, 1280, 1536, 1600, 2048, 2560, 3072, 4096, 5120])
def test_dropout_layer_norm_prenorm_training(hidden_size, input_dtype, residual_dtype, weight_dtype,
dropout_p, has_residual, has_rowscale):
if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
pytest.skip() # Not supported
# Backward numerical error is high, and this case isn't used
if has_rowscale and not has_residual:
pytest.skip()
device = 'cuda'
# rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4)
rtol, atol = (1e-3, 2e-4)
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen = 512
x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype,
requires_grad=True)
x0 = x0_pt.detach().clone().requires_grad_()
x0_ref = x0_pt.detach().clone().float().requires_grad_()
if has_residual:
x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
x1 = x1_pt.detach().clone().requires_grad_()
x1_ref = x1_pt.detach().clone().float().requires_grad_()
else:
x1 = None
if has_rowscale:
rowscale = torch.empty(batch_size, seqlen, device=device, dtype=input_dtype)
survival_rate = 0.87
rowscale = rowscale.bernoulli_(survival_rate) / survival_rate
x0_scaled_pt = x0_pt * rearrange(rowscale, '... -> ... 1')
x0_scaled_ref = x0_ref * rearrange(rowscale, '... -> ... 1')
else:
rowscale = None
x0_scaled_pt = x0_pt
x0_scaled_ref = x0_ref
model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype)
model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32)
model = DropoutAddLayerNorm(hidden_size, prenorm=True, p=dropout_p, device=device,
dtype=weight_dtype)
with torch.no_grad():
model.weight.copy_(model_pt.weight)
model.bias.copy_(model_pt.bias)
model_ref.weight.copy_(model_pt.weight)
model_ref.bias.copy_(model_pt.bias)
residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
out, residual, dmask = dropout_add_layer_norm(x0, x1, model.weight, model.bias, model.p,
model.epsilon, rowscale=rowscale, prenorm=True,
residual_in_fp32=residual_in_fp32,
return_dropout_mask=True)
print(f'Actual dropout fraction: {1 - dmask.float().mean().item()}')
if has_residual:
residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p) + x1_pt.float()).to(dtype=residual_dtype)
residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p) + x1_ref
else:
residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p)).to(dtype=residual_dtype)
residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p)
out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(dtype=input_dtype)
out_ref = model_ref(residual_ref)
assert out.dtype == input_dtype
assert residual.dtype == residual_dtype
assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4
assert (residual - residual_ref).abs().max() <= 4 * (residual_pt - residual_ref).abs().max() + 1e-4
g = torch.randn_like(out) / batch_size
(out_pt * F.sigmoid(residual_pt)).backward(g)
(out * F.sigmoid(residual)).backward(g)
(out_ref * F.sigmoid(residual_ref.to(dtype=residual_dtype))).backward(g)
assert (x0.grad - x0_ref.grad).abs().max() <= 4 * (x0_pt.grad - x0_ref.grad).abs().max() + 1e-4
if has_residual:
assert (x1.grad - x1_ref.grad).abs().max() <= 4 * (x1_pt.grad - x1_ref.grad).abs().max() + 1e-4
assert (model.weight.grad - model_ref.weight.grad).abs().max() <= 2 * (model_pt.weight.grad - model_ref.weight.grad).abs().max() + 2e-4
assert (model.bias.grad - model_ref.bias.grad).abs().max() <= 2 * (model_pt.bias.grad - model_ref.bias.grad).abs().max() + 2e-4
@pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16])
@pytest.mark.parametrize('input_dtype,residual_dtype',
[(torch.float16, torch.float16), (torch.float16, torch.float32),
(torch.float32, torch.float32)]
+ ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []))
@pytest.mark.parametrize('hidden_size', [768, 1024, 1280, 1536, 1600, 2048, 2560, 3072, 4096, 5120])
def test_dropout_layer_norm_prenorm_eval(hidden_size, input_dtype, residual_dtype, weight_dtype):
if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
pytest.skip() # Not supported
device = 'cuda'
# rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4)
rtol, atol = (1e-3, 1e-4)
dropout_p = 0.37
# set seed
torch.random.manual_seed(0)
batch_size = 32
seqlen = 512
x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype,
requires_grad=True)
x0 = x0_pt.detach().clone().requires_grad_()
x0_ref = x0_pt.detach().clone().float().requires_grad_()
x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
x1 = x1_pt.detach().clone().requires_grad_()
x1_ref = x1_pt.detach().clone().float().requires_grad_()
model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype)
model = DropoutAddLayerNorm(hidden_size, prenorm=True, p=dropout_p, device=device,
dtype=weight_dtype)
model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32)
with torch.no_grad():
model.weight.copy_(model_pt.weight)
model.bias.copy_(model_pt.bias)
model_ref.weight.copy_(model_pt.weight)
model_ref.bias.copy_(model_pt.bias)
model_pt.eval()
model.eval()
model_ref.eval()
out, residual = model(x0, x1)
residual_pt = (x0_pt.float() + x1_pt.float()).to(dtype=residual_dtype)
residual_ref = x0_ref + x1_ref
out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(input_dtype)
out_ref = model_ref(residual_ref)
assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4
assert (residual - residual_ref).abs().max() <= 4 * (residual_pt - residual_ref).abs().max() + 1e-4