2024-10-16 23:58:35 +08:00
""" Training script for LLaMA model.
2024-10-18 13:13:44 +08:00
torchrun - - nproc_per_node 1 - - master_addr localhost - - master_port 25500 train . py - - use_wandb
2024-10-29 21:42:38 +08:00
torchrun - - nproc_per_node 2 - - master_addr localhost - - master_port 25500 train . py - - dp_size 2 - - use_wandb
2024-10-28 13:19:59 +08:00
torchrun - - nproc_per_node 4 - - master_addr localhost - - master_port 25500 train . py - - tp_size 2 - - pp_size 2 - - use_wandb
torchrun - - nproc_per_node 4 - - master_addr localhost - - master_port 25500 train . py - - tp_size 2 - - pp_size 2 - - load_path ckpt / 150
2024-10-27 10:22:36 +08:00
torchrun - - nproc_per_node 8 - - master_addr localhost - - master_port 25500 train . py - - tp_size 2 - - dp_size 2 - - pp_size 2 - - use_wandb
2024-10-29 21:42:38 +08:00
CUDA_DEVICE_MAX_CONNECTIONS = 1 debugpy - run - p 5678 - m torch . distributed . run - - - - nproc_per_node = 2 - - nnodes = 1 - - rdzv_backend = c10d - - rdzv_endpoint = localhost : 29400 train . py - - dp_size 2
2024-10-16 23:58:35 +08:00
CUDA_DEVICE_MAX_CONNECTIONS = 1 torchrun - - nproc_per_node = 4 - - nnodes = 1 - - rdzv_backend = c10d - - rdzv_endpoint = localhost : 29400 - - max_restarts = 0 - - tee = 3 train . py
2024-09-24 05:14:48 +08:00
#VERBOSE=0 torchrun --nproc_per_node 4 --master_addr localhost --master_port 25500 train.py --pp_size 2 --dp_size 2
2024-10-16 23:58:35 +08:00
"""
2024-09-19 22:06:46 +08:00
import os
2024-10-29 23:44:35 +08:00
import json
2024-10-23 08:38:27 +08:00
import time
import argparse
2024-10-29 21:42:38 +08:00
from src . parallel . context_parallel import parallel_input
2024-09-25 21:17:05 +08:00
import torch . nn . functional as F
2024-09-19 22:06:46 +08:00
import torch , torch . distributed as dist
from torch . optim import AdamW
2024-10-10 23:12:14 +08:00
from transformers import AutoConfig
2024-10-16 23:58:35 +08:00
import numpy as np
2024-10-18 13:13:44 +08:00
from src . parallel . tensor_parallel . tensor_parallel import TensorParallel
2024-10-16 23:58:35 +08:00
import src . distributed . process_group_manager as pgm
2024-10-29 04:44:15 +08:00
from utils import MicroBatchDataLoader , set_all_seed , print , to_readable_format , save_checkpoint , load_checkpoint
2024-10-16 23:58:35 +08:00
from src . distributed . process_group_manager import setup_process_group_manager
from src . parallel . pipeline_parallel import train_step_pipeline_1f1b , train_step_pipeline_afab , PipelineParallel
from src . parallel . data_parallel . data_parallel_bucket import DataParallel
2024-10-10 23:08:23 +08:00
from model import Llama
2024-09-25 22:19:16 +08:00
import wandb
2024-10-29 21:42:38 +08:00
from src . distributed . distributed_primtives import all_reduce_loss_across_dp_cp_ranks
2024-09-25 22:19:16 +08:00
2024-10-16 23:58:35 +08:00
def train_step ( model , data_loader , device ) :
acc_loss = 0.0
2024-10-29 21:42:38 +08:00
requires_grad_sync = pgm . process_group_manager . cp_dp_world_size > 1
2024-10-18 13:13:44 +08:00
for i in range ( data_loader . grad_acc ) :
2024-10-28 15:46:23 +08:00
# get the next batch
batch = next ( data_loader )
input_ids = batch [ " input_ids " ] . to ( device )
target_ids = batch [ " target_ids " ] . to ( device )
2024-10-29 21:42:38 +08:00
input_ids , target_ids = parallel_input ( input_ids , target_ids ) # for context parallel, we need to split the input
2024-10-28 15:46:23 +08:00
# disable gradient synchronization for all but the last micro-batch
2024-10-29 21:42:38 +08:00
if requires_grad_sync :
2024-10-28 15:46:23 +08:00
model . require_backward_grad_sync = ( i == data_loader . grad_acc - 1 )
2024-10-18 13:13:44 +08:00
outputs = model ( input_ids = input_ids )
2024-09-25 21:17:05 +08:00
2024-10-18 13:13:44 +08:00
# compute the loss
2024-10-15 20:43:28 +08:00
batch_size , seq_len = input_ids . shape
2024-10-18 13:13:44 +08:00
target_ids = target_ids . reshape ( - 1 )
outputs = outputs . view ( seq_len * batch_size , - 1 )
2024-10-28 15:46:23 +08:00
loss = F . cross_entropy ( outputs , target_ids , reduction = ' mean ' ) / data_loader . grad_acc
2024-10-18 13:13:44 +08:00
2024-09-25 21:17:05 +08:00
loss . backward ( )
2024-09-25 20:36:22 +08:00
2024-10-18 13:13:44 +08:00
acc_loss + = loss . item ( )
2024-09-19 22:06:46 +08:00
2024-10-16 23:58:35 +08:00
return acc_loss
2024-09-19 22:06:46 +08:00
2024-10-29 23:44:35 +08:00
if __name__ == " __main__ " :
2024-09-23 18:28:01 +08:00
parser = argparse . ArgumentParser ( )
2024-10-29 23:44:35 +08:00
parser . add_argument ( " --config " , type = str , default = " " , help = " Path to config file " )
2024-09-23 18:28:01 +08:00
args = parser . parse_args ( )
2024-10-29 23:44:35 +08:00
with open ( args . config , " r " ) as f :
config = json . load ( f )
2024-09-23 18:28:01 +08:00
2024-10-29 23:44:35 +08:00
os . environ [ " OMP_NUM_THREADS " ] = config [ " environment " ] [ " OMP_NUM_THREADS " ]
os . environ [ " TOKENIZERS_PARALLELISM " ] = config [ " environment " ] [ " TOKENIZERS_PARALLELISM " ]
os . environ [ " FLASH_ATTEN " ] = config [ " environment " ] [ " FLASH_ATTEN " ] # Use cuda kernels from flash attention repo to accelerate the training. Model dtype should be torch.float16!
os . environ [ " DEVICE " ] = " cpu " if config [ " distributed " ] [ " use_cpu " ] else " cuda "
2024-10-29 04:44:15 +08:00
2024-10-29 23:44:35 +08:00
dtype = torch . bfloat16 if torch . cuda . is_available ( ) and torch . cuda . is_bf16_supported ( ) and not config [ " distributed " ] [ " use_cpu " ] else torch . float32 # if GPU is not available or not supported, use torch.float32
2024-10-23 07:38:44 +08:00
assert ( dtype == torch . bfloat16 and os . getenv ( " FLASH_ATTEN " ) == " 1 " ) or os . getenv ( " FLASH_ATTEN " ) != " 1 " , " Kernel operations requires dtype=torch.bfloat16 "
2024-10-29 23:44:35 +08:00
# hyperparameters
SEQ_LEN = config [ " training " ] [ " seq_length " ]
MICRO_BATCH_SIZE = config [ " training " ] [ " micro_batch_size " ]
LEARNING_RATE = config [ " training " ] [ " learning_rate " ]
NUM_SAMPLES = config [ " training " ] [ " num_samples " ]
MAX_TOKENS = config [ " training " ] [ " max_tokens " ]
SEED = config [ " training " ] [ " seed " ]
TOTAL_TRAIN_STEPS = config [ " training " ] [ " total_train_steps " ]
GRAD_ACC = config [ " training " ] [ " gradient_accumulation_steps " ]
MODEL_NAME = config [ " model " ] [ " name " ]
DATASET_NAME = config [ " dataset " ] [ " name " ]
NUM_WORKERS = config [ " dataset " ] [ " num_workers " ]
NUM_PROC = config [ " dataset " ] [ " num_proc " ]
USE_WANDB = config [ " logging " ] [ " use_wandb " ]
TP_SIZE = config [ " distributed " ] [ " tp_size " ]
PP_SIZE = config [ " distributed " ] [ " pp_size " ]
DP_SIZE = config [ " distributed " ] [ " dp_size " ]
CP_SIZE = config [ " distributed " ] [ " cp_size " ]
LOAD_PATH = config [ " checkpoint " ] [ " load_path " ]
CHECKPOINT_DIR = config [ " checkpoint " ] [ " save_dir " ]
CHECKPOINT_FREQ = config [ " checkpoint " ] [ " save_frequency " ]
2024-09-26 18:27:20 +08:00
local_rank = int ( os . environ [ " LOCAL_RANK " ] )
world_size = int ( os . environ [ " WORLD_SIZE " ] )
host = os . environ [ " MASTER_ADDR " ]
port = int ( os . environ [ " MASTER_PORT " ] )
2024-10-29 23:44:35 +08:00
backend = " gloo " if config [ " distributed " ] [ " use_cpu " ] else " nccl "
2024-09-26 18:27:20 +08:00
2024-10-29 23:44:35 +08:00
assert SEQ_LEN % CP_SIZE == 0 , " SEQ_LEN must be divisible by cp_size for Context Parallelism "
assert world_size == TP_SIZE * PP_SIZE * DP_SIZE * CP_SIZE , " world_size must be equal to tp_size * pp_size * dp_size * cp_size "
2024-10-15 20:43:28 +08:00
2024-09-26 18:27:20 +08:00
if backend == " nccl " :
torch . cuda . set_device ( local_rank )
device = torch . device ( " cuda " , local_rank )
else :
device = torch . device ( " cpu " )
2024-10-29 23:44:35 +08:00
2024-09-26 18:27:20 +08:00
dist . init_process_group ( rank = local_rank , world_size = world_size , backend = backend , init_method = f " tcp:// { host } : { port } " )
2024-10-29 23:44:35 +08:00
setup_process_group_manager ( tp_size = TP_SIZE , cp_size = CP_SIZE , pp_size = PP_SIZE , dp_size = DP_SIZE )
2024-10-29 21:42:38 +08:00
is_wandb_rank = pgm . process_group_manager . tp_rank == 0 and pgm . process_group_manager . dp_rank == 0 and pgm . process_group_manager . cp_rank == 0 and pgm . process_group_manager . pp_is_last_stage
2024-09-23 18:28:01 +08:00
2024-09-25 22:19:16 +08:00
set_all_seed ( SEED )
2024-10-18 22:33:46 +08:00
2024-10-29 23:44:35 +08:00
model_config = AutoConfig . from_pretrained ( MODEL_NAME )
model_config . num_hidden_layers = config [ " model " ] [ " num_hidden_layers " ]
model_config . num_attention_heads = config [ " model " ] [ " num_attention_heads " ]
model_config . num_key_value_heads = config [ " model " ] [ " num_key_value_heads " ]
2024-10-30 23:12:06 +08:00
model_config . max_position_embeddings = SEQ_LEN
2024-10-16 23:58:35 +08:00
2024-10-27 10:22:36 +08:00
start_time = time . time ( )
2024-10-29 23:44:35 +08:00
model = Llama ( config = model_config )
2024-10-29 21:42:38 +08:00
print ( " init model time: " , time . time ( ) - start_time , is_print_rank = is_wandb_rank )
2024-10-30 21:53:50 +08:00
start_time = time . time ( )
data_loader = MicroBatchDataLoader (
micro_batch_size = MICRO_BATCH_SIZE ,
seq_length = SEQ_LEN ,
dataset_name = DATASET_NAME ,
tokenizer_name = MODEL_NAME ,
grad_acc = GRAD_ACC ,
num_workers = NUM_WORKERS ,
num_proc = NUM_PROC ,
num_samples = NUM_SAMPLES
)
print ( " init dataloader time: " , time . time ( ) - start_time , is_print_rank = is_wandb_rank )
tokens_per_step = data_loader . global_batch_size * SEQ_LEN
2024-09-25 22:19:16 +08:00
2024-10-30 21:53:50 +08:00
if pgm . process_group_manager . global_rank == 0 :
print ( " Tokens per step: " , to_readable_format ( tokens_per_step ) , is_print_rank = is_wandb_rank )
2024-10-29 23:44:35 +08:00
if is_wandb_rank and USE_WANDB :
2024-09-25 22:19:16 +08:00
wandb . init (
project = " picotron " ,
2024-10-30 22:25:10 +08:00
name = f " { config [ ' logging ' ] [ ' run_name ' ] } _ { tokens_per_step } _ { pgm . process_group_manager } " ,
2024-09-25 22:19:16 +08:00
config = {
" tensor_parallel_size " : pgm . process_group_manager . tp_size ,
2024-10-30 21:53:50 +08:00
" context_parallel_size " : pgm . process_group_manager . cp_size ,
2024-09-25 22:19:16 +08:00
" pipeline_parallel_size " : pgm . process_group_manager . pp_size ,
2024-09-26 18:27:20 +08:00
" data_parallel_size " : pgm . process_group_manager . dp_size ,
2024-10-29 23:44:35 +08:00
" model " : config [ " model " ] [ " name " ] ,
" dataset " : config [ " dataset " ] [ " name " ] ,
2024-09-25 22:19:16 +08:00
" max_tokens " : MAX_TOKENS ,
" learning_rate " : LEARNING_RATE ,
" seed " : SEED ,
2024-10-30 21:53:50 +08:00
" micro_batch_size " : data_loader . micro_batch_size ,
" global_batch_size " : data_loader . global_batch_size ,
2024-10-29 23:44:35 +08:00
" gradient_accumulation " : GRAD_ACC ,
2024-09-25 22:19:16 +08:00
} ,
)
2024-10-14 17:26:31 +08:00
2024-10-27 10:22:36 +08:00
start_time = time . time ( )
2024-10-29 23:44:35 +08:00
2024-10-18 13:13:44 +08:00
if pgm . process_group_manager . tp_world_size > 1 :
2024-10-23 03:50:23 +08:00
TensorParallel ( model )
2024-09-25 20:36:22 +08:00
2024-09-25 21:33:20 +08:00
if pgm . process_group_manager . pp_world_size > 1 :
2024-10-29 23:44:35 +08:00
model = PipelineParallel ( model , model_config )
2024-10-30 04:58:04 +08:00
model . to ( dtype ) . to ( device )
2024-10-29 23:44:35 +08:00
2024-10-29 21:42:38 +08:00
# Context parallel and Data parallel both need gradient synchronization
if pgm . process_group_manager . cp_dp_world_size > 1 :
2024-10-18 22:59:39 +08:00
model = DataParallel ( model )
2024-10-29 21:42:38 +08:00
print ( " init parallel time: " , time . time ( ) - start_time , is_print_rank = is_wandb_rank )
2024-10-27 10:22:36 +08:00
start_time = time . time ( )
2024-10-29 21:42:38 +08:00
2024-09-25 20:36:22 +08:00
model . train ( )
2024-10-29 21:42:38 +08:00
print ( " model to device time: " , time . time ( ) - start_time , is_print_rank = is_wandb_rank )
2024-09-25 20:36:22 +08:00
2024-10-29 23:44:35 +08:00
tensor_shapes = ( data_loader . micro_batch_size , data_loader . seq_length_per_gpu , model_config . hidden_size )
2024-09-19 22:06:46 +08:00
optimizer = AdamW ( model . parameters ( ) , lr = LEARNING_RATE )
2024-09-25 20:36:22 +08:00
2024-09-19 22:06:46 +08:00
trained_tokens , step = 0 , 0
2024-10-29 23:44:35 +08:00
if LOAD_PATH :
step , trained_tokens = load_checkpoint ( model , optimizer , LOAD_PATH )
2024-10-28 13:19:59 +08:00
2024-09-25 20:36:22 +08:00
dist . barrier ( )
2024-10-15 21:06:17 +08:00
2024-10-29 23:44:35 +08:00
# #TODO: Double-check consumed tokens after each steps (for example, MICRO_BATCH_SIZE=2 and using only dp_size=4, num_local_micro_batches=0 => division by 0)
# #TODO: Check convergence
# #TODO: Try multi-nodes
# #TODO: Add activation checkpointing
# #TODO: add gradient accumulation
2024-09-24 05:14:48 +08:00
2024-10-29 23:44:35 +08:00
while MAX_TOKENS is None or trained_tokens < MAX_TOKENS :
2024-10-18 22:33:46 +08:00
#TODO: Add epoch support
# data_loader.set_epoch(step)
2024-10-23 08:38:27 +08:00
step_start_time = time . time ( )
2024-09-19 22:06:46 +08:00
optimizer . zero_grad ( )
2024-09-25 21:17:05 +08:00
2024-09-25 21:33:20 +08:00
if pgm . process_group_manager . pp_world_size > 1 :
2024-10-29 04:44:15 +08:00
loss = train_step_pipeline_afab ( model , data_loader , tensor_shapes , device , dtype )
2024-09-25 21:17:05 +08:00
else :
loss = train_step ( model , data_loader , device )
2024-10-29 21:42:38 +08:00
loss = all_reduce_loss_across_dp_cp_ranks ( loss , device )
2024-10-16 23:58:35 +08:00
2024-09-19 22:06:46 +08:00
optimizer . step ( )
trained_tokens + = tokens_per_step
step + = 1
2024-09-24 21:43:22 +08:00
2024-10-17 00:48:55 +08:00
# In DDP implementation I need to reset the gradient buffers
if hasattr ( model , ' reset ' ) :
model . reset ( )
2024-10-23 08:38:27 +08:00
step_duration = time . time ( ) - step_start_time
2024-10-17 00:48:55 +08:00
2024-10-29 21:42:38 +08:00
if is_wandb_rank :
2024-10-16 23:58:35 +08:00
print ( f " [rank { pgm . process_group_manager . global_rank } ] Step: { step } , Loss: { loss : .4f } , "
2024-10-23 08:38:27 +08:00
f " Global batch size: { to_readable_format ( tokens_per_step ) } , "
f " Tokens/s: { to_readable_format ( tokens_per_step / step_duration ) } , "
f " Tokens/s/GPU: { to_readable_format ( tokens_per_step / step_duration / world_size ) } , "
2024-10-27 10:22:36 +08:00
f " Tokens: { to_readable_format ( trained_tokens ) } { ( ' / ' + to_readable_format ( MAX_TOKENS ) ) if MAX_TOKENS else ' ' } , "
f " Memory usage: { torch . cuda . memory_reserved ( ) / 1e9 : .2f } GB "
2024-10-29 21:42:38 +08:00
, is_print_rank = is_wandb_rank )
2024-09-25 22:19:16 +08:00
2024-10-29 23:44:35 +08:00
if USE_WANDB :
2024-10-27 10:22:36 +08:00
wandb . log ( { " loss " : loss , " tokens_per_step " : tokens_per_step , " tokens_per_second " : tokens_per_step / step_duration , \
" memory_usage " : torch . cuda . memory_reserved ( ) / 1e9 , " trained_tokens " : trained_tokens } )
2024-10-29 23:44:35 +08:00
if step % CHECKPOINT_FREQ == 0 :
save_checkpoint ( model , optimizer , step , trained_tokens , CHECKPOINT_DIR + f " / { step } " )
2024-10-28 13:19:59 +08:00
2024-10-29 23:44:35 +08:00
if step > = TOTAL_TRAIN_STEPS :
2024-10-27 10:22:36 +08:00
break
2024-09-25 22:19:16 +08:00
2024-10-29 23:44:35 +08:00
if is_wandb_rank and USE_WANDB :
2024-09-25 22:19:16 +08:00
wandb . finish ( )
2024-09-24 21:43:22 +08:00
dist . destroy_process_group ( )