2024-10-16 23:58:35 +08:00
""" Training script for LLaMA model.
2024-10-18 13:13:44 +08:00
torchrun - - nproc_per_node 1 - - master_addr localhost - - master_port 25500 train . py - - use_wandb
torchrun - - nproc_per_node 2 - - master_addr localhost - - master_port 25500 train . py - - tp_size 2
2024-10-16 23:58:35 +08:00
torchrun - - nproc_per_node 2 - - master_addr localhost - - master_port 25500 train . py - - pp_size 2
torchrun - - nproc_per_node 2 - - master_addr localhost - - master_port 25500 train . py - - pp_size 1 - - dp_size 2
2024-10-18 13:13:44 +08:00
CUDA_DEVICE_MAX_CONNECTIONS = 1 debugpy - run - p 5678 - m torch . distributed . run - - - - nproc_per_node = 2 - - nnodes = 1 - - rdzv_backend = c10d - - rdzv_endpoint = localhost : 29400 train . py - - tp_size 2
2024-10-16 23:58:35 +08:00
CUDA_DEVICE_MAX_CONNECTIONS = 1 torchrun - - nproc_per_node = 4 - - nnodes = 1 - - rdzv_backend = c10d - - rdzv_endpoint = localhost : 29400 - - max_restarts = 0 - - tee = 3 train . py
2024-09-24 05:14:48 +08:00
#VERBOSE=0 torchrun --nproc_per_node 4 --master_addr localhost --master_port 25500 train.py --pp_size 2 --dp_size 2
2024-10-16 23:58:35 +08:00
"""
import multiprocessing
2024-09-19 22:06:46 +08:00
import os
2024-09-25 21:17:05 +08:00
import torch . nn . functional as F
2024-09-19 22:06:46 +08:00
import torch , torch . distributed as dist
from torch . optim import AdamW
2024-10-10 23:12:14 +08:00
from transformers import AutoConfig
from transformers import AutoTokenizer
from torch . utils . data import DataLoader , DistributedSampler
from datasets import load_dataset
2024-09-23 18:28:01 +08:00
import argparse
2024-10-16 23:58:35 +08:00
from datasets import Features , Sequence , Value
import numpy as np
2024-10-18 13:13:44 +08:00
from src . parallel . tensor_parallel . tensor_parallel import TensorParallel
2024-10-16 23:58:35 +08:00
import src . distributed . process_group_manager as pgm
from utils import set_all_seed , print
from src . distributed . process_group_manager import setup_process_group_manager
from src . parallel . pipeline_parallel import train_step_pipeline_1f1b , train_step_pipeline_afab , PipelineParallel
from src . parallel . data_parallel . data_parallel_bucket import DataParallel
2024-10-18 13:13:44 +08:00
# from src.parallel.context_parallel import ContextParallel
2024-10-16 23:58:35 +08:00
from model import LLaMA
2024-09-25 22:19:16 +08:00
import wandb
2024-10-15 21:32:44 +08:00
import multiprocessing
2024-09-25 22:19:16 +08:00
2024-10-10 23:12:14 +08:00
class MicroBatchDataLoader ( DataLoader ) :
2024-10-18 13:13:44 +08:00
def __init__ ( self , global_batch_size , micro_batch_size , seq_length , dataset_name , tokenizer_name , grad_acc = 1 , split = " train " , num_samples = None , num_workers = 0 ) :
2024-10-16 23:58:35 +08:00
self . global_batch_size = global_batch_size
self . micro_batch_size = micro_batch_size
self . seq_length = seq_length
self . local_batch_size = self . global_batch_size / / pgm . process_group_manager . dp_world_size # each DP rank gets a local batch
2024-10-10 23:12:14 +08:00
self . num_local_micro_batches = self . local_batch_size / / self . micro_batch_size
self . num_global_micro_batches = self . global_batch_size / / self . micro_batch_size
2024-10-18 13:13:44 +08:00
self . grad_acc = grad_acc
2024-10-10 23:12:14 +08:00
2024-10-15 20:43:28 +08:00
self . seq_length_per_gpu = seq_length / / pgm . process_group_manager . cp_world_size
2024-10-10 23:12:14 +08:00
self . tokenizer = AutoTokenizer . from_pretrained ( tokenizer_name )
self . dataset = load_dataset ( dataset_name , split = split )
2024-10-16 23:58:35 +08:00
if num_samples :
self . dataset = self . dataset . select ( range ( min ( num_samples , len ( self . dataset ) ) ) )
2024-10-10 23:12:14 +08:00
dist . barrier ( )
2024-10-16 23:58:35 +08:00
# Tokenize and chunk the dataset
self . tokenized_dataset = self . tokenize_dataset ( self . dataset , " text " , self . seq_length )
2024-10-10 23:12:14 +08:00
2024-10-16 23:58:35 +08:00
self . sampler = DistributedSampler (
self . tokenized_dataset ,
num_replicas = pgm . process_group_manager . dp_world_size ,
rank = pgm . process_group_manager . dp_rank ,
shuffle = False
)
super ( ) . __init__ (
self . tokenized_dataset ,
batch_size = micro_batch_size if pgm . process_group_manager . pp_world_size > 1 else self . local_batch_size , # in PP we split a single batch into multiple micro-batches
collate_fn = self . collate_batch ,
pin_memory = True ,
num_workers = num_workers ,
sampler = self . sampler ,
shuffle = False
)
2024-10-10 23:12:14 +08:00
2024-10-16 23:58:35 +08:00
def tokenize_dataset ( self , dataset , text_column_name , sequence_length , num_proc = 48 ) :
def _tokenizer_group_text ( texts ) :
tokenized_text_batch = self . tokenizer . batch_encode_plus (
texts ,
return_attention_mask = False ,
return_token_type_ids = False ,
return_tensors = ' np '
)
concatenated_tokens = { ' input_ids ' : np . concatenate ( tokenized_text_batch [ ' input_ids ' ] ) }
total_length = len ( concatenated_tokens [ ' input_ids ' ] )
if total_length > = sequence_length + 1 :
total_length = ( ( total_length - 1 ) / / sequence_length ) * sequence_length + 1
result = {
' input_ids ' : [
concatenated_tokens [ ' input_ids ' ] [ i : i + sequence_length + 1 ]
for i in range ( 0 , total_length - sequence_length , sequence_length )
]
}
return result
2024-10-10 23:12:14 +08:00
2024-10-16 23:58:35 +08:00
tokenized_dataset = dataset . map (
_tokenizer_group_text ,
input_columns = text_column_name ,
remove_columns = dataset . column_names ,
features = Features ( { " input_ids " : Sequence ( feature = Value ( dtype = " int64 " ) , length = sequence_length + 1 ) } ) ,
batched = True ,
num_proc = num_proc , # Adjust this based on your system capabilities
load_from_cache_file = True ,
desc = f " Grouping texts in chunks of { sequence_length + 1 } " ,
)
2024-10-10 23:12:14 +08:00
2024-10-16 23:58:35 +08:00
return tokenized_dataset
2024-09-25 21:17:05 +08:00
2024-10-16 23:58:35 +08:00
def collate_batch ( self , batch ) :
input_ids = [ item [ ' input_ids ' ] [ : - 1 ] for item in batch ]
label_ids = [ item [ ' input_ids ' ] [ 1 : ] for item in batch ]
attention_mask = [ [ 1 ] * len ( input_id ) for input_id in input_ids ]
label_mask = [ [ 1 ] * len ( label_id ) for label_id in label_ids ]
2024-09-25 20:36:22 +08:00
2024-10-16 23:58:35 +08:00
return {
' input_ids ' : torch . tensor ( input_ids , dtype = torch . long ) ,
' target_ids ' : torch . tensor ( label_ids , dtype = torch . long ) ,
' attention_mask ' : torch . tensor ( attention_mask , dtype = torch . long ) ,
' label_mask ' : torch . tensor ( label_mask , dtype = torch . long ) ,
}
def __iter__ ( self ) :
if self . _iterator is None :
self . _iterator = super ( ) . __iter__ ( )
return self
2024-09-25 21:17:05 +08:00
2024-10-16 23:58:35 +08:00
def __next__ ( self ) :
if self . _iterator is None :
self . _iterator = super ( ) . __iter__ ( )
try :
batch = next ( self . _iterator )
except StopIteration :
self . _iterator = None
raise StopIteration
return batch
2024-09-25 21:17:05 +08:00
2024-10-16 23:58:35 +08:00
def train_step ( model , data_loader , device ) :
acc_loss = 0.0
# get the next batch
batch = next ( data_loader )
input_ids = batch [ " input_ids " ] . to ( device )
target_ids = batch [ " target_ids " ] . to ( device )
2024-10-18 13:13:44 +08:00
for i in range ( data_loader . grad_acc ) :
outputs = model ( input_ids = input_ids )
2024-09-25 21:17:05 +08:00
2024-10-18 13:13:44 +08:00
# compute the loss
batch_size , seq_len = input_ids . shape
target_ids = target_ids . reshape ( - 1 )
outputs = outputs . view ( seq_len * batch_size , - 1 )
loss = F . cross_entropy ( outputs , target_ids , reduction = ' mean ' )
loss . backward ( )
2024-09-25 20:36:22 +08:00
2024-10-18 13:13:44 +08:00
acc_loss + = loss . item ( )
acc_loss / = data_loader . grad_acc
2024-09-19 22:06:46 +08:00
2024-10-16 23:58:35 +08:00
return acc_loss
2024-09-19 22:06:46 +08:00
if __name__ == " __main__ " :
2024-09-23 18:28:01 +08:00
parser = argparse . ArgumentParser ( )
parser . add_argument ( " --tp_size " , type = int , default = 1 )
2024-09-26 21:45:53 +08:00
parser . add_argument ( " --cp_size " , type = int , default = 1 )
2024-09-23 18:28:01 +08:00
parser . add_argument ( " --pp_size " , type = int , default = 1 )
parser . add_argument ( " --dp_size " , type = int , default = 1 )
2024-09-25 22:19:16 +08:00
parser . add_argument ( " --use_wandb " , action = " store_true " , default = False )
2024-09-26 18:27:20 +08:00
parser . add_argument ( " --use_cpu " , action = " store_true " , default = False )
parser . add_argument ( " --master_addr " , type = str , default = " localhost " )
parser . add_argument ( " --master_port " , type = int , default = 29500 )
2024-09-23 18:28:01 +08:00
args = parser . parse_args ( )
2024-09-26 18:27:20 +08:00
os . environ [ " OMP_NUM_THREADS " ] = " 1 "
2024-09-19 22:06:46 +08:00
os . environ [ " TOKENIZERS_PARALLELISM " ] = " false "
2024-09-26 18:27:20 +08:00
local_rank = int ( os . environ [ " LOCAL_RANK " ] )
world_size = int ( os . environ [ " WORLD_SIZE " ] )
host = os . environ [ " MASTER_ADDR " ]
port = int ( os . environ [ " MASTER_PORT " ] )
2024-10-16 23:58:35 +08:00
# SEQ_LEN, GLOBAL_BATCH_SIZE, MICRO_BATCH_SIZE, LEARNING_RATE, NUM_SAMPLES, MAX_TOKENS, SEED = 10, 6, 2, 1e-4, 20, 1800, 42
## hyperparameters
SEQ_LEN , GLOBAL_BATCH_SIZE , MICRO_BATCH_SIZE , LEARNING_RATE , NUM_SAMPLES , MAX_TOKENS , SEED = 1024 , 16 , 4 , 3e-4 , 100000 , int ( 10e8 ) , 42
2024-10-18 13:13:44 +08:00
grad_acc = 16
2024-09-26 18:27:20 +08:00
2024-10-15 20:43:28 +08:00
assert SEQ_LEN % args . cp_size == 0 , " SEQ_LEN must be divisible by cp_size for Context Parallelism "
2024-09-26 18:27:20 +08:00
backend = " gloo " if args . use_cpu else " nccl "
if backend == " nccl " :
torch . cuda . set_device ( local_rank )
device = torch . device ( " cuda " , local_rank )
else :
device = torch . device ( " cpu " )
dist . init_process_group ( rank = local_rank , world_size = world_size , backend = backend , init_method = f " tcp:// { host } : { port } " )
2024-09-26 21:45:53 +08:00
setup_process_group_manager ( tp_size = args . tp_size , cp_size = args . cp_size , pp_size = args . pp_size , dp_size = args . dp_size )
2024-09-23 18:28:01 +08:00
2024-10-14 17:26:31 +08:00
# if pgm.process_group_manager.global_rank == 0:
# display_4D_parallelism_grid()
2024-09-25 22:19:16 +08:00
set_all_seed ( SEED )
dataset_name = " roneneldan/TinyStories "
2024-10-16 23:58:35 +08:00
model_name = " HuggingFaceTB/SmolLM-360M-Instruct "
2024-09-25 20:36:22 +08:00
config = AutoConfig . from_pretrained ( model_name )
2024-10-18 13:13:44 +08:00
config . num_attention_heads = 16
config . num_key_value_heads = 4
2024-10-16 23:58:35 +08:00
model = LLaMA (
config = config
2024-10-18 13:13:44 +08:00
)
2024-09-25 22:19:16 +08:00
if pgm . process_group_manager . global_rank == 0 and args . use_wandb :
wandb . init (
project = " picotron " ,
name = f " test_convergence_ { pgm . process_group_manager } " ,
config = {
" tensor_parallel_size " : pgm . process_group_manager . tp_size ,
" pipeline_parallel_size " : pgm . process_group_manager . pp_size ,
2024-09-26 18:27:20 +08:00
" data_parallel_size " : pgm . process_group_manager . dp_size ,
2024-09-25 22:19:16 +08:00
" model " : model_name ,
" dataset " : dataset_name ,
" max_tokens " : MAX_TOKENS ,
" learning_rate " : LEARNING_RATE ,
" seed " : SEED ,
" micro_batch_size " : MICRO_BATCH_SIZE ,
" global_batch_size " : GLOBAL_BATCH_SIZE ,
} ,
)
2024-09-25 20:36:22 +08:00
2024-10-18 13:13:44 +08:00
if pgm . process_group_manager . tp_world_size > 1 :
TensorParallel ( model )
# if pgm.process_group_manager.cp_size > 1:
# model = ContextParallel(model, config)
2024-09-26 21:45:53 +08:00
2024-09-25 21:33:20 +08:00
if pgm . process_group_manager . pp_world_size > 1 :
2024-10-16 23:58:35 +08:00
model = PipelineParallel ( model , config )
2024-09-25 21:17:05 +08:00
2024-09-25 21:33:20 +08:00
if pgm . process_group_manager . dp_world_size > 1 :
2024-10-16 23:58:35 +08:00
model = DataParallel ( model , pgm . process_group_manager . dp_group )
2024-09-25 20:36:22 +08:00
2024-10-18 13:13:44 +08:00
model . to ( device )
2024-09-25 20:36:22 +08:00
model . train ( )
2024-10-18 13:13:44 +08:00
data_loader = MicroBatchDataLoader ( GLOBAL_BATCH_SIZE , MICRO_BATCH_SIZE , SEQ_LEN , dataset_name , model_name , grad_acc = grad_acc , num_samples = NUM_SAMPLES )
2024-10-15 20:43:28 +08:00
tensor_shapes = ( data_loader . micro_batch_size , data_loader . seq_length_per_gpu , config . hidden_size )
2024-09-19 22:06:46 +08:00
optimizer = AdamW ( model . parameters ( ) , lr = LEARNING_RATE )
2024-09-25 20:36:22 +08:00
2024-09-19 22:06:46 +08:00
trained_tokens , step = 0 , 0
2024-10-18 13:13:44 +08:00
tokens_per_step = data_loader . num_global_micro_batches * data_loader . micro_batch_size * SEQ_LEN * grad_acc
2024-09-25 20:36:22 +08:00
dist . barrier ( )
2024-10-15 21:06:17 +08:00
2024-09-25 21:33:20 +08:00
#TODO: Double-check consumed tokens after each steps (for example, MICRO_BATCH_SIZE=2 and using only dp_size=4, num_local_micro_batches=0 => division by 0)
2024-09-26 21:45:53 +08:00
#TODO: Check convergence
#TODO: Try multi-nodes
2024-09-25 21:17:05 +08:00
#TODO: Add activation checkpointing
#TODO: add gradient accumulation
2024-09-24 05:14:48 +08:00
2024-09-25 20:36:22 +08:00
while trained_tokens < MAX_TOKENS :
2024-09-19 22:06:46 +08:00
optimizer . zero_grad ( )
2024-09-25 21:17:05 +08:00
2024-09-25 21:33:20 +08:00
if pgm . process_group_manager . pp_world_size > 1 :
2024-09-25 21:17:05 +08:00
loss = train_step_pipeline_afab ( model , data_loader , tensor_shapes , device )
else :
loss = train_step ( model , data_loader , device )
2024-10-16 23:58:35 +08:00
# average the loss across all DP/CP ranks
2024-09-26 22:00:06 +08:00
if pgm . process_group_manager . dp_world_size > 1 or pgm . process_group_manager . cp_world_size > 1 :
2024-10-16 23:58:35 +08:00
loss_tensor = torch . tensor ( [ loss ] , dtype = torch . float32 , device = device )
handle = dist . all_reduce ( loss_tensor , group = pgm . process_group_manager . cp_dp_group , async_op = True , op = dist . ReduceOp . AVG )
2024-09-19 22:06:46 +08:00
optimizer . step ( )
trained_tokens + = tokens_per_step
step + = 1
2024-09-24 21:43:22 +08:00
2024-10-17 00:48:55 +08:00
# In DDP implementation I need to reset the gradient buffers
if hasattr ( model , ' reset ' ) :
model . reset ( )
2024-09-25 22:12:31 +08:00
if pgm . process_group_manager . global_rank == 0 :
2024-10-16 23:58:35 +08:00
if pgm . process_group_manager . dp_world_size > 1 or pgm . process_group_manager . cp_world_size > 1 :
handle . wait ( )
loss = loss_tensor . item ( )
print ( f " [rank { pgm . process_group_manager . global_rank } ] Step: { step } , Loss: { loss : .4f } , "
f " Global batch size: { tokens_per_step } , "
f " Tokens: { trained_tokens } / { MAX_TOKENS } "
)
2024-09-25 22:19:16 +08:00
if pgm . process_group_manager . global_rank == 0 and args . use_wandb :
wandb . log ( { " loss " : loss , " trained_tokens " : trained_tokens } )
if pgm . process_group_manager . global_rank == 0 and args . use_wandb :
wandb . finish ( )
2024-09-24 21:43:22 +08:00
dist . destroy_process_group ( )