better config creation
This commit is contained in:
parent
402aa4ccfc
commit
1dbe034d57
100
bench/create_config.py
Normal file
100
bench/create_config.py
Normal file
@ -0,0 +1,100 @@
|
||||
|
||||
"""
|
||||
python create_config.py --out_dir tmp --exp_name test_2_node --tp 2 --cp 2 --pp 2 --dp 2 --model_name HuggingFaceTB/SmolLM-360M-Instruct
|
||||
"""
|
||||
from copy import deepcopy
|
||||
from transformers import AutoConfig
|
||||
import os
|
||||
import shutil
|
||||
import argparse
|
||||
import json
|
||||
from typing import Optional
|
||||
|
||||
def create_single_config(
|
||||
out_dir: str,
|
||||
tp: int,
|
||||
cp: int,
|
||||
pp: int,
|
||||
dp: int,
|
||||
model_name: str,
|
||||
num_hidden_layers: Optional[int],
|
||||
num_attention_heads: Optional[int],
|
||||
num_key_value_heads: Optional[int],
|
||||
grad_acc: int,
|
||||
mbs: int,
|
||||
seq_len: int,
|
||||
exp_name: str,
|
||||
):
|
||||
run_path = os.path.join(out_dir, exp_name)
|
||||
|
||||
if not os.path.exists(out_dir):
|
||||
os.makedirs(out_dir)
|
||||
|
||||
with open("template/base_config.json", "r") as f:
|
||||
base_config = json.load(f)
|
||||
|
||||
config_content = deepcopy(base_config)
|
||||
config_content["training"]["seq_length"] = seq_len
|
||||
config_content["checkpoint"]["save_dir"] = run_path
|
||||
|
||||
config_content["model"]["name"] = model_name
|
||||
|
||||
tmp_model_config = AutoConfig.from_pretrained(model_name)
|
||||
config_content["model"]["num_hidden_layers"] = tmp_model_config.num_hidden_layers if num_hidden_layers is None else num_hidden_layers
|
||||
config_content["model"]["num_attention_heads"] = tmp_model_config.num_attention_heads if num_attention_heads is None else num_attention_heads
|
||||
config_content["model"]["num_key_value_heads"] = tmp_model_config.num_key_value_heads if num_key_value_heads is None else num_key_value_heads
|
||||
del tmp_model_config
|
||||
|
||||
config_content['distributed']['tp_size'] = tp
|
||||
config_content['distributed']['cp_size'] = cp
|
||||
config_content['distributed']['pp_size'] = pp
|
||||
config_content['distributed']['dp_size'] = dp
|
||||
|
||||
gbs = dp * mbs * grad_acc
|
||||
gbs_token = gbs * seq_len
|
||||
print(f"Gbs_token: {gbs_token:,}, Gbs: {gbs}, dp: {dp}, seq_len: {seq_len}, grad_acc: {grad_acc}, mbs: {mbs}")
|
||||
|
||||
config_content['training']['gradient_accumulation_steps'] = grad_acc
|
||||
config_content['training']['micro_batch_size'] = mbs
|
||||
|
||||
if os.path.exists(run_path):
|
||||
shutil.rmtree(run_path)
|
||||
|
||||
os.makedirs(run_path)
|
||||
with open(os.path.join(run_path, "config.json"), "w") as new_config:
|
||||
json.dump(config_content, new_config, indent=4)
|
||||
del config_content
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--out_dir", type=str, help="Output directory to store the configs", default="tmp")
|
||||
parser.add_argument("--tp", type=int, help="number of tensor parallelism", default=1)
|
||||
parser.add_argument("--cp", type=int, help="number of context parallelism", default=1)
|
||||
parser.add_argument("--pp", type=int, help="number of pipeline parallelism", default=1)
|
||||
parser.add_argument("--dp", type=int, help="number of data parallelism", default=1)
|
||||
parser.add_argument("--model_name", type=str, help="Model name to create configs for", default="HuggingFaceTB/SmolLM-360M-Instruct")
|
||||
parser.add_argument("--num_hidden_layers", type=int, help="Number of hidden layers", default=None)
|
||||
parser.add_argument("--num_attention_heads", type=int, help="Number of attention heads", default=None)
|
||||
parser.add_argument("--num_key_value_heads", type=int, help="Number of key value heads", default=None)
|
||||
parser.add_argument("--grad_acc", type=int, help="grad accumulation", default=1)
|
||||
parser.add_argument("--mbs", type=int, help="micro batch size", default=1)
|
||||
parser.add_argument("--seq_len", type=int, help="Sequence length", default=1024)
|
||||
parser.add_argument("--exp_name", type=str, help="Experiment name", default="dummy_exp")
|
||||
|
||||
args=parser.parse_args()
|
||||
|
||||
create_single_config(
|
||||
out_dir=args.out_dir,
|
||||
tp=args.tp,
|
||||
cp=args.cp,
|
||||
dp=args.dp,
|
||||
pp=args.pp,
|
||||
model_name=args.model_name,
|
||||
num_hidden_layers=args.num_hidden_layers,
|
||||
num_attention_heads=args.num_attention_heads,
|
||||
num_key_value_heads=args.num_key_value_heads,
|
||||
grad_acc=args.grad_acc,
|
||||
mbs=args.mbs,
|
||||
seq_len=args.seq_len,
|
||||
exp_name=args.exp_name,
|
||||
)
|
||||
@ -1,192 +0,0 @@
|
||||
from copy import deepcopy
|
||||
import numpy as np
|
||||
from template.template_base_configs import template_base_config
|
||||
import itertools
|
||||
import yaml
|
||||
import os
|
||||
from transformers import AutoTokenizer
|
||||
import math
|
||||
import shutil
|
||||
import argparse
|
||||
|
||||
def update_config_based_on_model(model: str, config: dict):
|
||||
|
||||
# Setting num_attention_heads = num_key_value_heads for all models <=> using MHA for all layers
|
||||
|
||||
if model == "small-llama":
|
||||
config["model"]["model_config"]["hidden_size"] = 512
|
||||
config["model"]["model_config"]["intermediate_size"] = 1024
|
||||
config["model"]["model_config"]["num_attention_heads"] = 16
|
||||
config["model"]["model_config"]["num_hidden_layers"] = 10
|
||||
config["model"]["model_config"]["num_key_value_heads"] = 16
|
||||
config["model"]["model_config"]["max_position_embeddings"] = config["tokens"]["sequence_length"]
|
||||
elif model == "llama-1M":
|
||||
config["model"]["model_config"]["hidden_size"] = 768
|
||||
config["model"]["model_config"]["intermediate_size"] = 3072
|
||||
config["model"]["model_config"]["num_attention_heads"] = 16
|
||||
config["model"]["model_config"]["num_hidden_layers"] = 12
|
||||
config["model"]["model_config"]["num_key_value_heads"] = 16
|
||||
config["model"]["model_config"]["max_position_embeddings"] = config["tokens"]["sequence_length"]
|
||||
elif model == "llama-1B":
|
||||
# HuggingFaceFW/ablation-model-fineweb-v1
|
||||
config["model"]["model_config"]["hidden_size"] = 2048
|
||||
config["model"]["model_config"]["intermediate_size"] = 4096
|
||||
config["model"]["model_config"]["num_attention_heads"] = 32
|
||||
config["model"]["model_config"]["num_hidden_layers"] = 24
|
||||
config["model"]["model_config"]["num_key_value_heads"] = 32
|
||||
config["model"]["model_config"]["max_position_embeddings"] = config["tokens"]["sequence_length"]
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(config["tokenizer"]["tokenizer_name_or_path"])
|
||||
config["model"]["model_config"]["vocab_size"] = tokenizer.vocab_size
|
||||
|
||||
def create_single_config(
|
||||
out_dir: str,
|
||||
model: str,
|
||||
gpus: int,
|
||||
dp: int,
|
||||
tp: int,
|
||||
pp: int,
|
||||
bapr: int,
|
||||
mbs: int,
|
||||
no_profiler: bool = False,
|
||||
cluster: str = "hf",
|
||||
exp_name: str = None,
|
||||
seq_len: int = 4096,
|
||||
lighteval: bool = False,
|
||||
s3: bool = False,
|
||||
# recompute_layer: bool = False,
|
||||
dry_run: bool = False
|
||||
):
|
||||
|
||||
run_path = os.path.join(out_dir, exp_name)
|
||||
|
||||
if not os.path.exists(out_dir):
|
||||
os.makedirs(out_dir)
|
||||
|
||||
print(f"Creating single config for {model} given {gpus} GPUs")
|
||||
config_content = deepcopy(base_config)
|
||||
config_content["tokens"]["sequence_length"] = seq_len
|
||||
# config_content["parallelism"]["recompute_layer"] = recompute_layer
|
||||
config_content["checkpoints"]["checkpoints_path"] = run_path
|
||||
update_config_based_on_model(model, config_content)
|
||||
|
||||
if cluster == "hf":
|
||||
tp_max_cluster = 8
|
||||
elif cluster == "swiss-ai":
|
||||
tp_max_cluster = 4 # GH200
|
||||
|
||||
config_content['parallelism']['dp'] = dp
|
||||
config_content['parallelism']['tp'] = tp
|
||||
config_content['parallelism']['pp'] = pp
|
||||
|
||||
# Compute global batch_size and print
|
||||
gbs = dp * mbs * bapr
|
||||
gbs_token = gbs * seq_len
|
||||
# Print in human readable format
|
||||
print(f"Gbs_token: {gbs_token:,}, Gbs: {gbs}, dp: {dp}, seq_len: {seq_len}, bapr: {bapr}, mbs: {mbs}")
|
||||
|
||||
config_content['tokens']['batch_accumulation_per_replica'] = bapr
|
||||
config_content['tokens']['micro_batch_size'] = mbs
|
||||
|
||||
# Create a directory for each combination of parallelism
|
||||
# if recompute_layer:
|
||||
# run_path += "_recompute_layer"
|
||||
|
||||
# Get absoulte path for run_path
|
||||
if no_profiler:
|
||||
config_content['profiler'] = None
|
||||
else:
|
||||
config_content['profiler']['profiler_export_path'] = os.path.abspath(run_path)
|
||||
|
||||
if s3:
|
||||
config_content["general"]["is_s3_available"] = True
|
||||
config_content['s3_upload'] = {
|
||||
"remove_after_upload": True,
|
||||
"s5cmd_concurrency": 5,
|
||||
"s5cmd_numworkers": 16,
|
||||
"s5cmd_path": "/fsx/elie_bakouch/miniconda3/envs/smollm/bin/s5cmd",
|
||||
"upload_s3_path": f"s3://huggingface-brrr-us-east-1/fmom/nanotron_pr/{exp_name}"
|
||||
}
|
||||
|
||||
if lighteval:
|
||||
config_content['lighteval'] = {
|
||||
"batch_size": 16,
|
||||
"generation": None,
|
||||
"logging": {
|
||||
"output_dir": None,
|
||||
"public_run": False,
|
||||
"push_to_hub": True,
|
||||
"push_to_tensorboard": True,
|
||||
"results_org": "HuggingFaceSmol",
|
||||
"save_details": True,
|
||||
"tensorboard_metric_prefix": "eval"
|
||||
},
|
||||
"parallelism": {
|
||||
"dp": dp,
|
||||
"expert_parallel_size": 1,
|
||||
"pp": pp,
|
||||
"pp_engine": "1f1b",
|
||||
"recompute_layer": False,
|
||||
"tp": tp,
|
||||
"tp_linear_async_communication": False,
|
||||
"tp_mode": "ALL_REDUCE",
|
||||
"tp_recompute_allgather": True
|
||||
},
|
||||
"tasks": {
|
||||
"custom_tasks": "nanotron.lighteval.evaluation_tasks",
|
||||
"dataset_loading_processes": 8,
|
||||
"max_samples": 1000,
|
||||
"multichoice_continuations_start_space": None,
|
||||
"num_fewshot_seeds": None,
|
||||
"pair_wise_tokenization": False,
|
||||
"tasks": "early-signal"
|
||||
}
|
||||
}
|
||||
|
||||
if os.path.exists(run_path):
|
||||
shutil.rmtree(run_path)
|
||||
|
||||
if not dry_run:
|
||||
os.makedirs(run_path)
|
||||
with open(os.path.join(run_path, "config.yaml"), "w") as new_config:
|
||||
yaml.dump(config_content, new_config, default_flow_style=False, sort_keys=False)
|
||||
|
||||
del config_content
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--out_dir", type=str, help="Output directory to store the configs")
|
||||
parser.add_argument("--model", type=str, help="Model to create configs for")
|
||||
parser.add_argument("--gpus", type=int, help="Number of GPUs")
|
||||
parser.add_argument("--dp", type=int, required=True, help="Max number of data parallelism")
|
||||
parser.add_argument("--tp", type=int, required=True, help="Max number of tensor parallelism")
|
||||
parser.add_argument("--pp", type=int, required=True, help="Max number of pipeline parallelism")
|
||||
parser.add_argument("--bapr", type=int, help="Max batch accumulation per replica")
|
||||
parser.add_argument("--mbs", type=int, help="Max micro batch size")
|
||||
parser.add_argument("--seq_len", type=int, help="Sequence length", default=4096)
|
||||
parser.add_argument("--exp_name", type=str, help="Experiment name")
|
||||
parser.add_argument("--recompute_layer", action="store_true", help="Enable recompute allgather for tensor parallelism")
|
||||
parser.add_argument("--use_async", action="store_true", help="Enable async communication for tensor parallelism")
|
||||
parser.add_argument("--lighteval", action="store_true", help="Enable light evaluation")
|
||||
parser.add_argument("--s3", action="store_true", help="Enable light evaluation")
|
||||
|
||||
args=parser.parse_args()
|
||||
|
||||
create_single_config(
|
||||
out_dir=args.out_dir,
|
||||
model=args.model,
|
||||
gpus=args.gpus,
|
||||
dp=args.dp,
|
||||
tp=args.tp,
|
||||
pp=args.pp,
|
||||
bapr=args.bapr,
|
||||
mbs=args.mbs,
|
||||
cluster="hf",
|
||||
exp_name=args.exp_name,
|
||||
seq_len=args.seq_len,
|
||||
# recompute_layer=args.recompute_layer,
|
||||
lighteval=args.lighteval,
|
||||
s3=args.s3,
|
||||
dry_run=False,
|
||||
no_profiler=True
|
||||
)
|
||||
@ -2,8 +2,8 @@
|
||||
"distributed": {
|
||||
"tp_size": 1,
|
||||
"cp_size": 1,
|
||||
"pp_size": 2,
|
||||
"dp_size": 2,
|
||||
"pp_size": 1,
|
||||
"dp_size": 1,
|
||||
"master_addr": "localhost",
|
||||
"master_port": 29500,
|
||||
"backend": "nccl",
|
||||
@ -22,7 +22,6 @@
|
||||
"learning_rate": 3e-4,
|
||||
"total_train_steps": 200,
|
||||
"seq_length": 1024,
|
||||
"local_batch_size": 64,
|
||||
"micro_batch_size": 32,
|
||||
"gradient_accumulation_steps": 1,
|
||||
"num_samples": 400000,
|
||||
40
train.py
40
train.py
@ -76,7 +76,6 @@ if __name__ == "__main__":
|
||||
|
||||
# hyperparameters
|
||||
SEQ_LEN = config["training"]["seq_length"]
|
||||
LOCAL_BATCH_SIZE = config["training"]["local_batch_size"]
|
||||
MICRO_BATCH_SIZE = config["training"]["micro_batch_size"]
|
||||
LEARNING_RATE = config["training"]["learning_rate"]
|
||||
NUM_SAMPLES = config["training"]["num_samples"]
|
||||
@ -116,10 +115,6 @@ if __name__ == "__main__":
|
||||
setup_process_group_manager(tp_size=TP_SIZE, cp_size=CP_SIZE, pp_size=PP_SIZE, dp_size=DP_SIZE)
|
||||
is_wandb_rank = pgm.process_group_manager.tp_rank == 0 and pgm.process_group_manager.dp_rank == 0 and pgm.process_group_manager.cp_rank == 0 and pgm.process_group_manager.pp_is_last_stage
|
||||
|
||||
tokens_per_step = LOCAL_BATCH_SIZE * SEQ_LEN * GRAD_ACC * DP_SIZE
|
||||
if pgm.process_group_manager.global_rank == 0:
|
||||
print("Tokens per step:", to_readable_format(tokens_per_step), is_print_rank=is_wandb_rank)
|
||||
|
||||
set_all_seed(SEED)
|
||||
|
||||
model_config = AutoConfig.from_pretrained(MODEL_NAME)
|
||||
@ -130,13 +125,31 @@ if __name__ == "__main__":
|
||||
start_time = time.time()
|
||||
model = Llama(config=model_config)
|
||||
print("init model time:", time.time()-start_time, is_print_rank=is_wandb_rank)
|
||||
|
||||
start_time = time.time()
|
||||
data_loader = MicroBatchDataLoader(
|
||||
micro_batch_size=MICRO_BATCH_SIZE,
|
||||
seq_length=SEQ_LEN,
|
||||
dataset_name=DATASET_NAME,
|
||||
tokenizer_name=MODEL_NAME,
|
||||
grad_acc=GRAD_ACC,
|
||||
num_workers=NUM_WORKERS,
|
||||
num_proc=NUM_PROC,
|
||||
num_samples=NUM_SAMPLES
|
||||
)
|
||||
print("init dataloader time:", time.time()-start_time, is_print_rank=is_wandb_rank)
|
||||
tokens_per_step = data_loader.global_batch_size * SEQ_LEN
|
||||
|
||||
if pgm.process_group_manager.global_rank == 0:
|
||||
print("Tokens per step:", to_readable_format(tokens_per_step), is_print_rank=is_wandb_rank)
|
||||
|
||||
if is_wandb_rank and USE_WANDB:
|
||||
wandb.init(
|
||||
project="picotron",
|
||||
name=f"test_convergence_GBS_{tokens_per_step}_{pgm.process_group_manager}",
|
||||
config={
|
||||
"tensor_parallel_size": pgm.process_group_manager.tp_size,
|
||||
"context_parallel_size": pgm.process_group_manager.cp_size,
|
||||
"pipeline_parallel_size": pgm.process_group_manager.pp_size,
|
||||
"data_parallel_size": pgm.process_group_manager.dp_size,
|
||||
"model": config["model"]["name"],
|
||||
@ -144,8 +157,8 @@ if __name__ == "__main__":
|
||||
"max_tokens": MAX_TOKENS,
|
||||
"learning_rate": LEARNING_RATE,
|
||||
"seed": SEED,
|
||||
"micro_batch_size": MICRO_BATCH_SIZE,
|
||||
"global_batch_size": LOCAL_BATCH_SIZE * pgm.process_group_manager.dp_size * GRAD_ACC,
|
||||
"micro_batch_size": data_loader.micro_batch_size,
|
||||
"global_batch_size": data_loader.global_batch_size,
|
||||
"gradient_accumulation": GRAD_ACC,
|
||||
},
|
||||
)
|
||||
@ -170,19 +183,6 @@ if __name__ == "__main__":
|
||||
model.train()
|
||||
print("model to device time:", time.time()-start_time, is_print_rank=is_wandb_rank)
|
||||
|
||||
start_time = time.time()
|
||||
data_loader = MicroBatchDataLoader(
|
||||
local_batch_size=LOCAL_BATCH_SIZE,
|
||||
micro_batch_size=MICRO_BATCH_SIZE,
|
||||
seq_length=SEQ_LEN,
|
||||
dataset_name=DATASET_NAME,
|
||||
tokenizer_name=MODEL_NAME,
|
||||
grad_acc = GRAD_ACC,
|
||||
num_workers=NUM_WORKERS,
|
||||
num_proc=NUM_PROC,
|
||||
num_samples=NUM_SAMPLES
|
||||
)
|
||||
print("init dataloader time:", time.time()-start_time, is_print_rank=is_wandb_rank)
|
||||
tensor_shapes = (data_loader.micro_batch_size, data_loader.seq_length_per_gpu, model_config.hidden_size)
|
||||
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
|
||||
|
||||
|
||||
10
utils.py
10
utils.py
@ -75,14 +75,16 @@ def load_checkpoint(model, optimizer, out_dir):
|
||||
return checkpoint['trained_steps'], checkpoint['trained_tokens']
|
||||
|
||||
class MicroBatchDataLoader(DataLoader):
|
||||
def __init__(self, local_batch_size, micro_batch_size, seq_length, dataset_name, tokenizer_name, num_workers, num_proc, grad_acc=1, split="train", num_samples=None):
|
||||
self.global_batch_size = local_batch_size * pgm.process_group_manager.dp_world_size
|
||||
def __init__(self, micro_batch_size, seq_length, dataset_name, tokenizer_name, num_workers, num_proc, grad_acc, split="train", num_samples=None):
|
||||
|
||||
self.micro_batch_size = micro_batch_size
|
||||
self.seq_length = seq_length
|
||||
self.local_batch_size = local_batch_size
|
||||
self.grad_acc = grad_acc
|
||||
|
||||
self.local_batch_size = micro_batch_size * grad_acc
|
||||
self.global_batch_size = self.local_batch_size * pgm.process_group_manager.dp_world_size
|
||||
self.num_local_micro_batches = self.local_batch_size // self.micro_batch_size
|
||||
self.num_global_micro_batches = self.global_batch_size // self.micro_batch_size
|
||||
self.grad_acc = grad_acc
|
||||
|
||||
self.seq_length_per_gpu = seq_length // pgm.process_group_manager.cp_world_size
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user