stop iteration fix. recreate a new dataloder

This commit is contained in:
zzhhjjj 2024-12-13 13:29:11 +00:00
parent ebef9a36e3
commit 481eeb8377
2 changed files with 223 additions and 8 deletions

View File

@ -8,8 +8,7 @@ from transformers import AutoTokenizer
import picotron.process_group_manager as pgm
class MicroBatchDataLoader(DataLoader):
def __init__(self, micro_batch_size, seq_length, dataset_name, tokenizer_name, num_workers, num_proc, grad_acc_steps, split="train", num_samples=None):
def __init__(self, micro_batch_size, seq_length, dataset_name, tokenizer_name, num_workers, num_proc, grad_acc_steps, split="train", num_samples=None, pin_memory=True):
self.micro_batch_size = micro_batch_size
self.seq_length = seq_length
self.grad_acc_steps = grad_acc_steps
@ -37,7 +36,7 @@ class MicroBatchDataLoader(DataLoader):
self.tokenized_dataset,
batch_size=micro_batch_size,
collate_fn=self.collate_batch,
pin_memory=True,
pin_memory=pin_memory,
num_workers=num_workers,
sampler=self.sampler,
shuffle=False
@ -96,14 +95,11 @@ class MicroBatchDataLoader(DataLoader):
input_ids = batch_input_ids[:, start_idx:end_idx].contiguous()
target_ids = batch_input_ids[:, start_idx+1:end_idx+1].contiguous()
position_ids = torch.arange(start_idx, end_idx, dtype=torch.long).unsqueeze(0).expand(batch_size, -1).contiguous()
local_attn_mask = torch.tril(torch.ones((self.seq_length_per_gpu, self.seq_length_per_gpu), dtype=torch.bool))
attn_mask = local_attn_mask.unsqueeze(0).expand(batch_size, -1, -1).contiguous()
return {
"input_ids": input_ids,
"target_ids": target_ids,
"position_ids": position_ids,
"attn_mask": attn_mask,
"hidden_states": None
}
@ -118,6 +114,12 @@ class MicroBatchDataLoader(DataLoader):
try:
batch = next(self._iterator)
except StopIteration:
self._iterator = None
raise StopIteration
# Reinitialize the sampler and iterator
self.sampler.set_epoch(self.sampler.epoch + 1 if hasattr(self.sampler, 'epoch') else 0)
self._iterator = super().__iter__()
try:
batch = next(self._iterator)
except StopIteration:
self._iterator = None
raise StopIteration
return batch

213
tests/test_dataloader.py Normal file
View File

@ -0,0 +1,213 @@
"""
torchrun --nproc_per_node 2 --master_addr localhost --master_port 25500 test_dataloader.py
"""
from picotron.data import MicroBatchDataLoader
import torch.distributed as dist
import os
import datetime
from picotron.process_group_manager import setup_process_group_manager
import torch
from torch.utils.data import DataLoader, DistributedSampler
import numpy as np
from functools import partial
from datasets import Features, Sequence, Value, load_dataset
from transformers import AutoTokenizer
import picotron.process_group_manager as pgm
# remove context parallelism split. as a reference
class DummyDataLoader(DataLoader):
def __init__(self, micro_batch_size, seq_length, dataset_name, tokenizer_name, num_workers, num_proc, grad_acc_steps, split="train", num_samples=None, pin_memory=True):
self.micro_batch_size = micro_batch_size
self.seq_length = seq_length
self.grad_acc_steps = grad_acc_steps
self.global_batch_size = micro_batch_size * grad_acc_steps * pgm.process_group_manager.dp_world_size
self.num_global_micro_batches = self.global_batch_size // self.micro_batch_size
self.seq_length_per_gpu = seq_length // pgm.process_group_manager.cp_world_size
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
self.dataset = load_dataset(dataset_name, split=split)
if num_samples:
self.dataset = self.dataset.select(range(min(num_samples, len(self.dataset))))
# Tokenize and chunk the dataset
self.tokenized_dataset = self.tokenize_dataset(self.dataset, "text", self.seq_length, num_proc)
self.sampler = DistributedSampler(
self.tokenized_dataset,
num_replicas=pgm.process_group_manager.dp_world_size,
rank=pgm.process_group_manager.dp_rank,
shuffle=False
)
super().__init__(
self.tokenized_dataset,
batch_size=micro_batch_size,
collate_fn=self.collate_batch,
pin_memory=True,
num_workers=num_workers,
sampler=self.sampler,
shuffle=False
)
@staticmethod
def tokenizer_group_text(examples, tokenizer, sequence_length):
"""Tokenize a list of texts and group them in chunks of sequence_length + 1"""
tokenized_text_batch = tokenizer.batch_encode_plus(
examples,
return_attention_mask=False,
return_token_type_ids=False,
return_tensors='np'
)
concatenated_tokens = {'input_ids': np.concatenate(tokenized_text_batch['input_ids'])}
total_length = len(concatenated_tokens['input_ids'])
if total_length >= sequence_length + 1:
total_length = ((total_length - 1) // sequence_length) * sequence_length + 1
result = {
'input_ids': [
concatenated_tokens['input_ids'][i : i + sequence_length + 1]
for i in range(0, total_length - sequence_length, sequence_length)
]
}
return result
def tokenize_dataset(self, dataset, text_column_name, sequence_length, num_proc):
"""Tokenize the dataset and group texts in chunks of sequence_length + 1"""
# Create a partial function with fixed arguments
tokenizer_func = partial(
self.tokenizer_group_text,
tokenizer=self.tokenizer,
sequence_length=sequence_length
)
tokenized_dataset = dataset.map(
tokenizer_func,
input_columns=text_column_name,
remove_columns=dataset.column_names,
features=Features({
"input_ids": Sequence(feature=Value(dtype="int64"), length=sequence_length + 1)
}),
batched=True,
num_proc=num_proc,
load_from_cache_file=True,
desc=f"Grouping texts in chunks of {sequence_length+1}",
)
return tokenized_dataset
def collate_batch(self, batch):
batch_input_ids = torch.stack([torch.tensor(item['input_ids']) for item in batch])
batch_size = batch_input_ids.size(0)
input_ids = batch_input_ids[:, :self.seq_length].contiguous()
target_ids = batch_input_ids[:, 1:self.seq_length+1].contiguous()
position_ids = torch.arange(0, self.seq_length, dtype=torch.long).unsqueeze(0).expand(batch_size, -1).contiguous()
return {
"input_ids": input_ids,
"target_ids": target_ids,
"position_ids": position_ids,
"hidden_states": None
}
def __iter__(self):
if self._iterator is None:
self._iterator = super().__iter__()
return self
def __next__(self):
if self._iterator is None:
self._iterator = super().__iter__()
try:
batch = next(self._iterator)
except StopIteration:
# Reinitialize the sampler and iterator
self.sampler.set_epoch(self.sampler.epoch + 1 if hasattr(self.sampler, 'epoch') else 0)
self._iterator = super().__iter__()
try:
batch = next(self._iterator)
except StopIteration:
self._iterator = None
raise StopIteration
return batch
# test the tokens are split correctly in context parallelism
# TODO: test zigzag behavior
def test_cp_behavior(TP_SIZE, CP_SIZE, PP_SIZE, DP_SIZE, SEQ_LEN=8):
local_rank = int(os.environ["LOCAL_RANK"])
global_rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
backend = "nccl"
assert SEQ_LEN % CP_SIZE == 0, "SEQ_LEN must be divisible by cp_size for Context Parallelism"
dist.init_process_group(rank=global_rank, world_size=world_size, backend=backend, init_method=f"env://", timeout=datetime.timedelta(minutes=3))
setup_process_group_manager(tp_size=TP_SIZE, cp_size=CP_SIZE, pp_size=PP_SIZE, dp_size=DP_SIZE)
data_loader = MicroBatchDataLoader(
micro_batch_size=2,
seq_length=SEQ_LEN,
dataset_name="roneneldan/TinyStories",
tokenizer_name="HuggingFaceTB/SmolLM-135M",
grad_acc_steps=1,
num_workers=1,
num_proc=1,
num_samples=10,
pin_memory=False
)
ref_data_loader = DummyDataLoader(
micro_batch_size=2,
seq_length=SEQ_LEN,
dataset_name="roneneldan/TinyStories",
tokenizer_name="HuggingFaceTB/SmolLM-135M",
grad_acc_steps=1,
num_workers=1,
num_proc=1,
num_samples=10,
pin_memory=False
)
for i in range(1):
ref_batch = next(ref_data_loader)
batch = next(data_loader)
split_size = ref_batch["input_ids"].shape[1] // pgm.process_group_manager.cp_world_size
start_idx = split_size * global_rank
end_idx = start_idx + split_size
assert torch.equal(ref_batch["input_ids"][:,start_idx:end_idx], batch["input_ids"]), "input_ids are not equal"
# test the infinite loop behavior
def test_infinite_loop():
local_rank = 0
global_rank = 0
world_size = 1
backend = "nccl"
dist.init_process_group(rank=global_rank, world_size=world_size, backend=backend, init_method=f"env://", timeout=datetime.timedelta(minutes=3))
setup_process_group_manager(tp_size=1, cp_size=1, pp_size=1, dp_size=1)
data_loader = MicroBatchDataLoader(
micro_batch_size=2,
seq_length=256,
dataset_name="roneneldan/TinyStories",
tokenizer_name="HuggingFaceTB/SmolLM-135M",
grad_acc_steps=1,
num_workers=1,
num_proc=1,
num_samples=2,
)
s = set()
for i in range(10):
batch = next(data_loader)
# Convert the nested list to a tuple of tuples
batch_tuple = tuple(tuple(x) for x in batch["input_ids"].tolist())
if batch_tuple in s:
assert True
s.add(batch_tuple)
assert False
if __name__ == "__main__":
# test_infinite_loop()
test_cp_behavior(TP_SIZE=1, CP_SIZE=2, PP_SIZE=1, DP_SIZE=1, SEQ_LEN=8)